Android6.0 X86 ARM64位可用的注入Inject
来源:程序员人生 发布时间:2016-12-06 10:44:21 阅读次数:3664次
最近在网上搜索Android的Inject与Hook,发现很多都由于时间久远而失效了,试了很多方案,终究找到了1个,特地来转载分享1下,本人的3星S6 6.0.1系统测试可用,另外4.2 4.4也都测试通过。
另外加上了注释便于大家理解。
转自 http://blog.csdn.net/jinzhuojun/article/details/9900105
1.inject.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/user.h>
#include <asm/ptrace.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <dlfcn.h>
#include <dirent.h>
#include <unistd.h>
#include <string.h>
#include <elf.h>
#include <android/log.h>
#include <sys/uio.h>
#if defined(__i386__)
#define pt_regs user_regs_struct
#elif defined(__aarch64__)
#define pt_regs user_pt_regs
#define uregs regs
#define ARM_pc pc
#define ARM_sp sp
#define ARM_cpsr pstate
#define ARM_lr regs[30]
#define ARM_r0 regs[0]
#define PTRACE_GETREGS PTRACE_GETREGSET
#define PTRACE_SETREGS PTRACE_SETREGSET
#endif
#define ENABLE_DEBUG 1
#if ENABLE_DEBUG
#define LOG_TAG "INJECT"
#define LOGD(fmt, args...) __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG, fmt, ##args)
#define DEBUG_PRINT(format,args...) \
LOGD(format, ##args)
#else
#define DEBUG_PRINT(format,args...)
#endif
#define CPSR_T_MASK ( 1u << 5 )
#if defined(__aarch64__)
const char *libc_path = "/system/lib64/libc.so";
const char *linker_path = "/system/bin/linker64";
#else
const char *libc_path = "/system/lib/libc.so";
const char *linker_path = "/system/bin/linker";
#endif
int ptrace_readdata(pid_t pid, uint8_t *src, uint8_t *buf, size_t size)
{
long i, j, remain;
uint8_t *laddr;
size_t bytes_width = sizeof(long);
union u {
long val;
char chars[bytes_width];
} d;
j = size / bytes_width;
remain = size % bytes_width;
laddr = buf;
for (i = 0; i < j; i ++) {
d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0);
memcpy(laddr, d.chars, bytes_width);
src += bytes_width;
laddr += bytes_width;
}
if (remain > 0) {
d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0);
memcpy(laddr, d.chars, remain);
}
return 0;
}
/*
Func : 将size字节的data数据写入到pid进程的dest地址处
@param dest: 目的进程的栈地址
@param data: 需要写入的数据的起始地址
@param size: 需要写入的数据的大小,以字节为单位
*/
int ptrace_writedata(pid_t pid, uint8_t *dest, uint8_t *data, size_t size)
{
long i, j, remain;
uint8_t *laddr;
size_t bytes_width = sizeof(long);
//很奇妙的联合体,这样就能够方便的以字节为单位写入4字节数据,再以long为单位ptrace_poketext到栈中
union u {
long val;
char chars[bytes_width];
} d;
j = size / bytes_width;
remain = size % bytes_width;
laddr = data;
//先以4字节为单位进行数据写入
for (i = 0; i < j; i ++) {
memcpy(d.chars, laddr, bytes_width);
ptrace(PTRACE_POKETEXT, pid, dest, d.val);
dest += bytes_width;
laddr += bytes_width;
}
if (remain > 0) {
//为了最大程度的保持原栈的数据,先读取dest的long数据,然后只更改其中的前remain字节,再写回
d.val = ptrace(PTRACE_PEEKTEXT, pid, dest, 0);
for (i = 0; i < remain; i ++) {
d.chars[i] = *laddr ++;
}
ptrace(PTRACE_POKETEXT, pid, dest, d.val);
}
return 0;
}
/*
功能总结:
1,将要履行的指令写入寄存器中,指令长度大于4个long的话,需要将剩余的指令通过ptrace_writedata函数写入栈中;
2,使用ptrace_continue函数运行目的进程,直到目的进程返回状态值0xb7f(对该值的分析见后面红字);
3,函数履行完以后,目标进程挂起,使用ptrace_getregs函数获得当前的所有寄存器值,方便后面使用ptrace_retval函数获得函数的返回值。
*/
#if defined(__arm__) || defined(__aarch64__)
int ptrace_call(pid_t pid, uintptr_t addr, long *params, int num_params, struct pt_regs* regs)
{
int i;
#if defined(__arm__)
int num_param_registers = 4;
#elif defined(__aarch64__)
int num_param_registers = 8;
#endif
for (i = 0; i < num_params && i < num_param_registers; i ++) {
regs->uregs[i] = params[i];
}
//
// push remained params onto stack
//
if (i < num_params) {
regs->ARM_sp -= (num_params - i) * sizeof(long) ;
ptrace_writedata(pid, (void *)regs->ARM_sp,(uint8_t *)& params[i], (num_params - i) * sizeof(long));
}
//将PC寄存器值设为目标函数的地址
regs->ARM_pc = addr;
//进行指令集判断
if (regs->ARM_pc & 1) {
/* thumb */
regs->ARM_pc &= (~1u);
// #define CPSR_T_MASK ( 1u << 5 ) CPSR为程序状态寄存器
regs->ARM_cpsr |= CPSR_T_MASK;
} else {
/* arm */
regs->ARM_cpsr &= ~CPSR_T_MASK;
}
//设置子程序的返回地址为空,以便函数履行完后,返回到null地址,产生SIGSEGV毛病,详细作用见后面的红字分析
regs->ARM_lr = 0;
/*
*Ptrace_setregs就是将修改后的regs写入寄存器中,然后调用ptrace_continue来履行我们指定的代码
*/
if (ptrace_setregs(pid, regs) == ⑴
|| ptrace_continue(pid) == ⑴) {
printf("error\n");
return ⑴;
}
int stat = 0;
waitpid(pid, &stat, WUNTRACED);
/* WUNTRACED告知waitpid,如果子进程进入暂停状态,那末就立即返回。如果是被ptrace的子进程,那末即便不提供WUNTRACED参数,也会在子进程进入暂停状态的时候立即返回。
对使用ptrace_cont运行的子进程,它会在3种情况下进入暂停状态:①下1次系统调用;②子进程退出;③子进程的履行产生毛病。这里的0xb7f就表示子进程进入了暂停状态,且发送的毛病信号为11(SIGSEGV),它表示试图访问未分配给自己的内存, 或试图往没有写权限的内存地址写数据。那末甚么时候会产生这类毛病呢?明显,当子进程履行完注入的函数后,由于我们在前面设置了regs->ARM_lr = 0,它就会返回到0地址处继续履行,这样就会产生SIGSEGV了!*/
//这个循环是不是必须我还不肯定。由于目前每次ptrace_call调用一定会返回0xb7f,不过在这也算是增加容错性吧~
//通过看ndk的源码sys/wait.h和man waitpid可以知道这个0xb7f的具体作用。首先说1下stat的值:高2字节用于表示致使子进程的退出或暂停状态信号值,低2字节表示子进程是退出(0x0)还是暂停(0x7f)状态。0xb7f就表示子进程为暂停状态,致使它暂停的信号量为11即sigsegv毛病。
while (stat != 0xb7f) {
if (ptrace_continue(pid) == ⑴) {
printf("error\n");
return ⑴;
}
waitpid(pid, &stat, WUNTRACED);
}
return 0;
}
#elif defined(__i386__)
long ptrace_call(pid_t pid, uintptr_t addr, long *params, int num_params, struct user_regs_struct * regs)
{
regs->esp -= (num_params) * sizeof(long) ;
ptrace_writedata(pid, (void *)regs->esp, (uint8_t *)params, (num_params) * sizeof(long));
long tmp_addr = 0x00;
regs->esp -= sizeof(long);
ptrace_writedata(pid, regs->esp, (char *)&tmp_addr, sizeof(tmp_addr));
regs->eip = addr;
if (ptrace_setregs(pid, regs) == ⑴
|| ptrace_continue( pid) == ⑴) {
printf("error\n");
return ⑴;
}
int stat = 0;
waitpid(pid, &stat, WUNTRACED);
while (stat != 0xb7f) {
if (ptrace_continue(pid) == ⑴) {
printf("error\n");
return ⑴;
}
waitpid(pid, &stat, WUNTRACED);
}
return 0;
}
#else
#error "Not supported"
#endif
int ptrace_getregs(pid_t pid, struct pt_regs * regs)
{
#if defined (__aarch64__)
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = regs;
ioVec.iov_len = sizeof(*regs);
if (ptrace(PTRACE_GETREGSET, pid, (void*)regset, &ioVec) < 0) {
perror("ptrace_getregs: Can not get register values");
printf(" io %llx, %d", ioVec.iov_base, ioVec.iov_len);
return ⑴;
}
return 0;
#else
if (ptrace(PTRACE_GETREGS, pid, NULL, regs) < 0) {
perror("ptrace_getregs: Can not get register values");
return ⑴;
}
return 0;
#endif
}
int ptrace_setregs(pid_t pid, struct pt_regs * regs)
{
#if defined (__aarch64__)
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = regs;
ioVec.iov_len = sizeof(*regs);
if (ptrace(PTRACE_SETREGSET, pid, (void*)regset, &ioVec) < 0) {
perror("ptrace_setregs: Can not get register values");
return ⑴;
}
return 0;
#else
if (ptrace(PTRACE_SETREGS, pid, NULL, regs) < 0) {
perror("ptrace_setregs: Can not set register values");
return ⑴;
}
return 0;
#endif
}
int ptrace_continue(pid_t pid)
{
if (ptrace(PTRACE_CONT, pid, NULL, 0) < 0) {
perror("ptrace_cont");
return ⑴;
}
return 0;
}
int ptrace_attach(pid_t pid)
{
if (ptrace(PTRACE_ATTACH, pid, NULL, 0) < 0) {
perror("ptrace_attach");
return ⑴;
}
int status = 0;
waitpid(pid, &status , WUNTRACED);
return 0;
}
int ptrace_detach(pid_t pid)
{
if (ptrace(PTRACE_DETACH, pid, NULL, 0) < 0) {
perror("ptrace_detach");
return ⑴;
}
return 0;
}
//明显,这里面核心的就是get_module_base函数:
/*
此函数的功能就是通过遍历/proc/pid/maps文件,来找到目的module_name的内存映照起始地址。
由于内存地址的表达方式是startAddrxxxxxxx-endAddrxxxxxxx的,所以会在后面使用strtok(line,"-")来分割字符串
如果pid = ⑴,表示获得本地进程的某个模块的地址,
否则就是pid进程的某个模块的地址。
*/
void* get_module_base(pid_t pid, const char* module_name)
{
FILE *fp;
long addr = 0;
char *pch;
char filename[32];
char line[1024];
if (pid < 0) {
/* self process */
snprintf(filename, sizeof(filename), "/proc/self/maps", pid);
} else {
snprintf(filename, sizeof(filename), "/proc/%d/maps", pid);
}
fp = fopen(filename, "r");
if (fp != NULL) {
while (fgets(line, sizeof(line), fp)) {
if (strstr(line, module_name)) {
//分解字符串为1组字符串。line为要分解的字符串,"-"为分隔符字符串。
pch = strtok( line, "-" );
//将参数pch字符串根据参数base(表示进制)来转换成无符号的长整型数
addr = strtoull( pch, NULL, 16 );
if (addr == 0x8000)
addr = 0;
break;
}
}
fclose(fp) ;
}
return (void *)addr;
}
/*
该函数为1个封装函数,通过调用get_module_base函数来获得目的进程的某个模块的起始地址,然后通过公式计算出指定函数在目的进程的起始地址。
*/
void* get_remote_addr(pid_t target_pid, const char* module_name, void* local_addr)
{
void* local_handle, *remote_handle;
//获得本地某个模块的起始地址
local_handle = get_module_base(⑴, module_name);
//获得远程pid的某个模块的起始地址
remote_handle = get_module_base(target_pid, module_name);
DEBUG_PRINT("[+] get_remote_addr: local[%llx], remote[%llx]\n", local_handle, remote_handle);
/*这需要我们好好理解:local_addr - local_handle的值为指定函数(如mmap)在该模块中的偏移量,然后再加上rempte_handle,结果就为指定函数在目的进程的虚拟地址*/
void * ret_addr = (void *)((uintptr_t)local_addr + (uintptr_t)remote_handle - (uintptr_t)local_handle);
#if defined(__i386__)
if (!strcmp(module_name, libc_path)) {
ret_addr += 2;
}
#endif
return ret_addr;
}
//根据name找到pid
int find_pid_of(const char *process_name)
{
int id;
pid_t pid = ⑴;
DIR* dir;
FILE *fp;
char filename[32];
char cmdline[256];
struct dirent * entry;
if (process_name == NULL)
return ⑴;
dir = opendir("/proc");
if (dir == NULL)
return ⑴;
while((entry = readdir(dir)) != NULL) {
id = atoi(entry->d_name);
if (id != 0) {
sprintf(filename, "/proc/%d/cmdline", id);
fp = fopen(filename, "r");
if (fp) {
fgets(cmdline, sizeof(cmdline), fp);
fclose(fp);
if (strcmp(process_name, cmdline) == 0) {
/* process found */
pid = id;
break;
}
}
}
}
closedir(dir);
return pid;
}
uint64_t ptrace_retval(struct pt_regs * regs)
{
#if defined(__arm__) || defined(__aarch64__)
return regs->ARM_r0;
#elif defined(__i386__)
return regs->eax;
#else
#error "Not supported"
#endif
}
uint64_t ptrace_ip(struct pt_regs * regs)
{
#if defined(__arm__) || defined(__aarch64__)
return regs->ARM_pc;
#elif defined(__i386__)
return regs->eip;
#else
#error "Not supported"
#endif
}
//总结1下ptrace_call_wrapper,它的完成两个功能:
//1是调用ptrace_call函数来履行指定函数,履行完后将子进程挂起;
//2是调用ptrace_getregs函数获得所有寄存器的值,主要是为了获得r0即函数的返回值。
int ptrace_call_wrapper(pid_t target_pid, const char * func_name, void * func_addr, long * parameters, int param_num, struct pt_regs * regs)
{
DEBUG_PRINT("[+] Calling %s in target process.\n", func_name);
if (ptrace_call(target_pid, (uintptr_t)func_addr, parameters, param_num, regs) == ⑴)
return ⑴;
if (ptrace_getregs(target_pid, regs) == ⑴)
return ⑴;
DEBUG_PRINT("[+] Target process returned from %s, return value=%llx, pc=%llx \n",
func_name, ptrace_retval(regs), ptrace_ip(regs));
return 0;
}
//远程注入
int inject_remote_process(pid_t target_pid, const char *library_path, const char *function_name, const char *param, size_t param_size)
{
int ret = ⑴;
void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr, *dlerror_addr;
void *local_handle, *remote_handle, *dlhandle;
uint8_t *map_base = 0;
uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr;
struct pt_regs regs, original_regs;
long parameters[10];
DEBUG_PRINT("[+] Injecting process: %d\n", target_pid);
//①ATTATCH,指定目标进程,开始调试
if (ptrace_attach(target_pid) == ⑴)
goto exit;
//②GETREGS,获得目标进程的寄存器,保存现场
if (ptrace_getregs(target_pid, ®s) == ⑴)
goto exit;
/* save original registers */
memcpy(&original_regs, ®s, sizeof(regs));
//③通过get_remote_addr函数获得目的进程的mmap函数的地址,以便为libxxx.so分配内存
/*
需要对(void*)mmap进行说明:这是获得inject本身进程的mmap函数的地址,由于mmap函数在libc.so
库中,为了将libxxx.so加载到目的进程中,就需要使用目的进程的mmap函数,所以需要查找到libc.so库在目的进程的起始地址。
*/
mmap_addr = get_remote_addr(target_pid, libc_path, (void *)mmap);
DEBUG_PRINT("[+] Remote mmap address: %llx\n", mmap_addr);
/* call mmap (null, 0x4000, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
匿名申请1块0x4000大小的内存
*/
parameters[0] = 0; // addr
parameters[1] = 0x4000; // size
parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC; // prot
parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags
parameters[4] = 0; //fd
parameters[5] = 0; //offset
if (ptrace_call_wrapper(target_pid, "mmap", mmap_addr, parameters, 6, ®s) == ⑴)
goto exit;
//⑤从寄存器中获得mmap函数的返回值,即申请的内存首地址:
map_base = ptrace_retval(®s);
//⑥顺次获得linker中dlopen、dlsym、dlclose、dlerror函数的地址:
dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen );
dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym );
dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose );
dlerror_addr = get_remote_addr( target_pid, linker_path, (void *)dlerror );
DEBUG_PRINT("[+] Get imports: dlopen: %llx, dlsym: %llx, dlclose: %llx, dlerror: %llx\n",
dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr);
printf("library path = %s\n", library_path);
//⑦调用dlopen函数:
/*
①将要注入的so名写入前面mmap出来的内存
②写入dlopen代码
③履行dlopen("libxxx.so", RTLD_NOW ! RTLD_GLOBAL)
RTLD_NOW之类的参数作用可参考:
http://baike.baidu.com/view/2907309.htm?fr=aladdin
④获得dlopen的返回值,寄存在sohandle变量中
*/
ptrace_writedata(target_pid, map_base, library_path, strlen(library_path) + 1);
parameters[0] = map_base;
parameters[1] = RTLD_NOW| RTLD_GLOBAL;
if (ptrace_call_wrapper(target_pid, "dlopen", dlopen_addr, parameters, 2, ®s) == ⑴)
goto exit;
void * sohandle = ptrace_retval(®s);
if(!sohandle) {
if (ptrace_call_wrapper(target_pid, "dlerror", dlerror_addr, 0, 0, ®s) == ⑴)
goto exit;
uint8_t *errret = ptrace_retval(®s);
uint8_t errbuf[100];
ptrace_readdata(target_pid, errret, errbuf, 100);
}
//⑧调用dlsym函数
/*
同等于hook_entry_addr = (void *)dlsym(sohandle, "hook_entry");
*/
#define FUNCTION_NAME_ADDR_OFFSET 0x100
ptrace_writedata(target_pid, map_base + FUNCTION_NAME_ADDR_OFFSET, function_name, strlen(function_name) + 1);
parameters[0] = sohandle;
parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET;
if (ptrace_call_wrapper(target_pid, "dlsym", dlsym_addr, parameters, 2, ®s) == ⑴)
goto exit;
void * hook_entry_addr = ptrace_retval(®s);
DEBUG_PRINT("hook_entry_addr = %p\n", hook_entry_addr);
//⑨调用hook_entry函数:
#define FUNCTION_PARAM_ADDR_OFFSET 0x200
ptrace_writedata(target_pid, map_base + FUNCTION_PARAM_ADDR_OFFSET, param, strlen(param) + 1);
parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET;
if (ptrace_call_wrapper(target_pid, "hook_entry", hook_entry_addr, parameters, 1, ®s) == ⑴)
goto exit;
printf("Press enter to dlclose and detach\n");
getchar();
parameters[0] = sohandle;
//⑩调用dlclose关闭lib:
if (ptrace_call_wrapper(target_pid, "dlclose", dlclose, parameters, 1, ®s) == ⑴)
goto exit;
/* restore */
//⑪恢复现场并退出ptrace:
ptrace_setregs(target_pid, &original_regs);
ptrace_detach(target_pid);
ret = 0;
exit:
return ret;
}
int main(int argc, char** argv) {
pid_t target_pid;
target_pid = find_pid_of("system_server");
if (⑴ == target_pid) {
printf("Can't find the process\n");
return ⑴;
}
//target_pid = find_pid_of("/data/test");
inject_remote_process(target_pid, "/data/libhello.so", "hook_entry", "I'm parameter!", strlen("I'm parameter!"));
return 0;
}
Android.mk application.mk
APP_ABI :=arm64-v8a armeabi-v7a
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := inject
LOCAL_SRC_FILES := inject.c
#shellcode.s
LOCAL_LDLIBS += -L$(SYSROOT)/usr/lib -llog
#LOCAL_FORCE_STATIC_EXECUTABLE := true
include $(BUILD_EXECUTABLE)
2.inject的测试so
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <android/log.h>
#include <elf.h>
#include <fcntl.h>
#define LOG_TAG "DEBUG"
#define LOGD(fmt, args...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, fmt, ##args)
int hook_entry(char * a){
LOGD("Hook success, pid = %d\n", getpid());
LOGD("Hello %s\n", a);
return 0;
}
生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠