国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > php开源 > 综合技术 > Android性能专项测试之耗电量统计API

Android性能专项测试之耗电量统计API

来源:程序员人生   发布时间:2016-04-14 09:29:37 阅读次数:3709次

耗电量API

Android系统中很早就有耗电量的API,只不过1直都是隐藏的,Android系统的设置-电池功能就是调用的这个API,该API的核心部份是调用了com.android.internal.os.BatteryStatsHelper类,利用PowerProfile类,读取power_profile.xml文件,我们1起来看看具体如何计算耗电量,首先从最新版本6.0开始看

6.0的API

源码

BatteryStatsHelper
其中计算耗电量的方法为490行的processAppUsage,下来1步1步来解释该方法。

App耗电量的计算探究

private void processAppUsage(SparseArrayasUsers) {

方法的参数是1个SparseArray数组,存储的对象是UserHandle,官方文档给出的解释是,代表1个用户,可以理解为这个类里面存储了用户的相干信息.

final boolean forAllUsers = (asUsers.get(UserHandle.USER_ALL) != null);

然后判断该次计算是不是针对所有用户,通过UserHandle的USER_ALL值来判断,该值为⑴,源码的地址在https://github.com/DoctorQ/platform_frameworks_base/blob/android⑹.0.0_r1/core/java/android/os/UserHandle.java.

mStatsPeriod = mTypeBatteryRealtime;

然后给公共变量int类型的mStatsPeriod赋值,这个值mTypeBatteryRealtime的计算进程又在320行的refreshStats方法中:

mTypeBatteryRealtime = mStats.computeBatteryRealtime(rawRealtimeUs, mStatsType);

这里面用到了BatteryStats(mStats)类中的computeBatteryRealtime方法,该方法计算出此次统计电量的时间间隔。好,歪楼了,回到BatteryStatsHelper中。

BatterySipper osSipper = null; final SparseArray uidStats = mStats.getUidStats(); final int NU = uidStats.size();

首先创建1个BatterySipper对象osSipper,该对象里面可以存储1些后续我们要计算的值,然后通过BatteryStats类对象mStats来得到1个包括Uid的对象的SparseArray组数,然后计算了1下这个数组的大小,保存在变量NU中。

for (int iu = 0; iu < NU; iu++) { final Uid u = uidStats.valueAt(iu); final BatterySipper app = new BatterySipper(BatterySipper.DrainType.APP, u, 0);

然后for循环计算每一个Uid代表的App的耗电量,由于BatterySipper可计算的类型有3种:利用, 系统服务, 硬件类型,所以这个地方传入的是DrainType.APP,还有其他可选类型以下:

public enum DrainType { IDLE, CELL, PHONE, WIFI, BLUETOOTH, FLASHLIGHT, SCREEN, APP, USER, UNACCOUNTED, OVERCOUNTED, CAMERA }

罗列了目前可计算耗电量的模块。

mCpuPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mWakelockPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mMobileRadioPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mWifiPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mBluetoothPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mSensorPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mCameraPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType); mFlashlightPowerCalculator.calculateApp(app, u, mRawRealtime, mRawUptime, mStatsType);

其中mStatsType的值为BatteryStats.STATS_SINCE_CHARGED,代表了我们的计算规则是从上次充满电后数据,还有1种规则是STATS_SINCE_UNPLUGGED是拔掉USB线后的数据。而mRawRealtime是当前时间,mRawUptime是运行时间。6.0的对各个模块的消耗都交给了单独的类去计算,这些类都继承于PowerCalculator抽象类:

蓝牙耗电:BluetoothPowerCalculator.java 摄像头耗电:CameraPowerCalculator.java Cpu耗电:CpuPowerCalculator.java 手电筒耗电:FlashlightPowerCalculator.java 无线电耗电:MobileRadioPowerCalculator.java 传感器耗电:SensorPowerCalculator.java Wakelock耗电:WakelockPowerCalculator.java Wifi耗电:WifiPowerCalculator.java

这1部份我1会单独拿出来挨个解释,现在我们还是回到BatteryStatsHelper继续往下走

final double totalPower = app.sumPower();

BatterySipper#sumPower方法是统计总耗电量,方法详情以下,其中usagePowerMah这个值有点特殊,其他的上面都讲过.

/** * Sum all the powers and store the value into `value`. * @return the sum of all the power in this BatterySipper. */ public double sumPower() { return totalPowerMah = usagePowerMah + wifiPowerMah + gpsPowerMah + cpuPowerMah + sensorPowerMah + mobileRadioPowerMah + wakeLockPowerMah + cameraPowerMah + flashlightPowerMah; }

然后根据是不是是DEBUG版本打印信息,这个没啥可说的,然后会把刚才计算的电量值添加到列表中:

// Add the app to the list if it is consuming power. if (totalPower != 0 || u.getUid() == 0) { // // Add the app to the app list, WiFi, Bluetooth, etc, or into "Other Users" list. // final int uid = app.getUid(); final int userId = UserHandle.getUserId(uid); if (uid == Process.WIFI_UID) { mWifiSippers.add(app); } else if (uid == Process.BLUETOOTH_UID) { mBluetoothSippers.add(app); } else if (!forAllUsers && asUsers.get(userId) == null && UserHandle.getAppId(uid) >= Process.FIRST_APPLICATION_UID) { // We are told to just report this users apps as one large entry. Listlist = mUserSippers.get(userId); if (list == null) { list = new ArrayList<>(); mUserSippers.put(userId, list); } list.add(app); } else { mUsageList.add(app); } if (uid == 0) { osSipper = app; } }

首先判断totalPower的值和当前uid号是不是符合规则,规则为总耗电量不为0或用户id为0.当uid表明为WIFI或蓝牙时,添加到下面对应的列表中,1般情况下正常的利用我们直接保存到下面的mUsageList中就行就行,但是也有1些例外:

/** * List of apps using power. */ private final ListmUsageList = new ArrayList<>(); /** * List of apps using wifi power. */ private final ListmWifiSippers = new ArrayList<>(); /** * List of apps using bluetooth power. */ private final ListmBluetoothSippers = new ArrayList<>();

如果我们的系统是单用户系统,且当前的userId号不在我们的统计范围内,且其进程id号是大于Process.FIRST_APPLICATION_UID(10000,系统分配给普通利用的其实id号),我们就要将其寄存到mUserSippers数组中,定义以下:

private final SparseArraymUserSippers = new SparseArray<>();

最后判断uid为0的话,代表是Android操作系统的耗电量,赋值给osSipper(494行定义)就能够了,这样1个app的计算就完成了,遍历部份就不说了,保存这个osSipper是为了最后1步计算:

if (osSipper != null) { // The device has probably been awake for longer than the screen on // time and application wake lock time would account for. Assign // this remainder to the OS, if possible. mWakelockPowerCalculator.calculateRemaining(osSipper, mStats, mRawRealtime, mRawUptime, mStatsType); osSipper.sumPower(); }

主流程我们已介绍完了,下面来看各个子模块耗电量的计算

Cpu耗电量

CpuPowerCalculator.java

Cpu的计算要用到PowerProfile类,该类主要是解析power_profile.xml:

<device name="Android"> <item name="none">0item> <item name="screen.on">0.1item> <item name="screen.full">0.1item> <item name="bluetooth.active">0.1item> <item name="bluetooth.on">0.1item> <item name="wifi.on">0.1item> <item name="wifi.active">0.1item> <item name="wifi.scan">0.1item> <item name="dsp.audio">0.1item> <item name="dsp.video">0.1item> <item name="camera.flashlight">0.1item> <item name="camera.avg">0.1item> <item name="radio.active">0.1item> <item name="radio.scanning">0.1item> <item name="gps.on">0.1item> <array name="radio.on"> <value>0.2value> <value>0.1value> array> <array name="cpu.speeds"> <value>400000value> array> <item name="cpu.idle">0.1item> <array name="cpu.active"> <value>0.1value> array> <item name="battery.capacity">1000item> <array name="wifi.batchedscan"> <value>.0002value> <value>.002value> <value>.02value> <value>.2value> <value>2value> array> device>

这个里面存储了Cpu(cpu.speeds)的主频等级,和每一个主频每秒消耗的毫安(cpu.active),好,现在回到CpuPowerCalculator中,先来看构造方法

public CpuPowerCalculator(PowerProfile profile) { final int speedSteps = profile.getNumSpeedSteps(); mPowerCpuNormal = new double[speedSteps]; mSpeedStepTimes = new long[speedSteps]; for (int p = 0; p < speedSteps; p++) { mPowerCpuNormal[p] = profile.getAveragePower(PowerProfile.POWER_CPU_ACTIVE, p); } }

第1步取得Cpu有几个主频等级,由于不同等级消耗的电量不1样,所以要区分对待,根据主频的个数,然后初始化mPowerCpuNormal和mSpeedStepTimes,前者用来保存不同等级的耗电速度,后者用来保存在不同等级上耗时,然后给mPowerCpuNormal的每一个元素附上值。构造方法就完成了其所有的工作,现在来计算方法calculateApp,

final int speedSteps = mSpeedStepTimes.length; long totalTimeAtSpeeds = 0; for (int step = 0; step < speedSteps; step++) { mSpeedStepTimes[step] = u.getTimeAtCpuSpeed(step, statsType); totalTimeAtSpeeds += mSpeedStepTimes[step]; } totalTimeAtSpeeds = Math.max(totalTimeAtSpeeds, 1);

首先得到Cpu主频等级个数,然后BatteryStats.Uid得到不同主频上履行时间,计算Cpu总耗时保存在totalTimeAtSpeeds中,

app.cpuTimeMs = (u.getUserCpuTimeUs(statsType) + u.getSystemCpuTimeUs(statsType)) / 1000;

Cpu的履行时间分很多部份,但是我们关注User和Kernal部份,也就是上面的UserCpuTime和SystemCpuTime。

double cpuPowerMaMs = 0; for (int step = 0; step < speedSteps; step++) { final double ratio = (double) mSpeedStepTimes[step] / totalTimeAtSpeeds; final double cpuSpeedStepPower = ratio * app.cpuTimeMs * mPowerCpuNormal[step]; if (DEBUG && ratio != 0) { Log.d(TAG, "UID " + u.getUid() + ": CPU step #" + step + " ratio=" + BatteryStatsHelper.makemAh(ratio) + " power=" + BatteryStatsHelper.makemAh(cpuSpeedStepPower / (60 * 60 * 1000))); } cpuPowerMaMs += cpuSpeedStepPower; }

上面的代码就是将不同主频的消耗累加到1起,但是其中值得注意的是,他其实不是用各个主频的消耗时间*主频单位时间内消耗的电量,而是用1个radio变量来计算得到各个主频段履行时间占总时间的百分比,然后用cpuTimeMs来换算成各个主频的Cpu实际消耗时间,这比5.0的API多了这么1步,我估计是发现了计算的不严谨性,这也是Android迟迟不放出统计电量方式的缘由,其实google自己对这块也没有掌控,所以才会造成不同API计算方式的差异。好,计算完我们的总消耗后,是否是就算完事了?如果你只需要得到1个App的耗电总量,上面的讲授已足够了,但是6.0的API计算了每一个App的不同进程的耗电量,这个我们就只当看看就行,暂时没甚么实际意义。

// Keep track of the package with highest drain. double highestDrain = 0; app.cpuFgTimeMs = 0; final ArrayMap processStats = u.getProcessStats(); final int processStatsCount = processStats.size(); for (int i = 0; i < processStatsCount; i++) { final BatteryStats.Uid.Proc ps = processStats.valueAt(i); final String processName = processStats.keyAt(i); app.cpuFgTimeMs += ps.getForegroundTime(statsType); final long costValue = ps.getUserTime(statsType) + ps.getSystemTime(statsType) + ps.getForegroundTime(statsType); // Each App can have multiple packages and with multiple running processes. // Keep track of the package whos process has the highest drain. if (app.packageWithHighestDrain == null || app.packageWithHighestDrain.startsWith("*")) { highestDrain = costValue; app.packageWithHighestDrain = processName; } else if (highestDrain < costValue && !processName.startsWith("*")) { highestDrain = costValue; app.packageWithHighestDrain = processName; } } // Ensure that the CPU times make sense. if (app.cpuFgTimeMs > app.cpuTimeMs) { if (DEBUG && app.cpuFgTimeMs > app.cpuTimeMs + 10000) { Log.d(TAG, "WARNING! Cputime is more than 10 seconds behind Foreground time"); } // Statistics may not have been gathered yet. app.cpuTimeMs = app.cpuFgTimeMs; }

上面统计同1App下不同的进程的耗电量,得到消耗最大的进程名,保存到BatterySipper对象中,然后得出App的Cpu的foreground消耗时间,将foreground时间与之前计算得到的cpuTimeMs进行比较,如果foreground时间比cpuTimeMs还要大,那末就将cpuTimeMs的时间改变成foreground的值,但是这个值的变化对之前耗电总量的计算没有丝毫影响。

// Convert the CPU power to mAh app.cpuPowerMah = cpuPowerMaMs / (60 * 60 * 1000);

最后的最后,将耗电量用mAh单位来表示,所以在毫秒的基础上除以60*60*1000。

总结:Cpu耗电量的计算是要辨别不同主频的,频率不同,单位时间内消耗的电量是有辨别的,这1点要明白。还有1点就是不同主频上的履行时间不是通过BatteryStats.Uid#getTimeAtCpuSpeed方法得到的,210是通过百分比和BatteryStats.Uid#getUserCpuTimeUs和getSystemCpuTimeUs计算得到cpuTimeMs乘积得到的。最后1点就是,cpuTimeMs时间是会在计算终了落后行比较,比较的对象是CPU的foreground时间。

WakeLock耗电量的计算

WakelockPowerCalculator.java

从构造方法开始,

public WakelockPowerCalculator(PowerProfile profile) { mPowerWakelock = profile.getAveragePower(PowerProfile.POWER_CPU_AWAKE); }

首先得到power_profile.xml中cpu.awake表示的值,保存在mPowerWakelock变量中。构造方法只做了这么点事,下面进入calculateApp方法。

@Override public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs, long rawUptimeUs, int statsType) { long wakeLockTimeUs = 0; final ArrayMap.Uid.Wakelock> wakelockStats = u.getWakelockStats(); final int wakelockStatsCount = wakelockStats.size(); for (int i = 0; i < wakelockStatsCount; i++) { final BatteryStats.Uid.Wakelock wakelock = wakelockStats.valueAt(i); // Only care about partial wake locks since full wake locks // are canceled when the user turns the screen off. BatteryStats.Timer timer = wakelock.getWakeTime(BatteryStats.WAKE_TYPE_PARTIAL); if (timer != null) { wakeLockTimeUs += timer.getTotalTimeLocked(rawRealtimeUs, statsType); } } app.wakeLockTimeMs = wakeLockTimeUs / 1000; // convert to millis mTotalAppWakelockTimeMs += app.wakeLockTimeMs; // Add cost of holding a wake lock. app.wakeLockPowerMah = (app.wakeLockTimeMs * mPowerWakelock) / (1000*60*60); if (DEBUG && app.wakeLockPowerMah != 0) { Log.d(TAG, "UID " + u.getUid() + ": wake " + app.wakeLockTimeMs + " power=" + BatteryStatsHelper.makemAh(app.wakeLockPowerMah)); } }

首先取得Wakelock的数量,然后逐一遍历得到每一个Wakelock对象,得到该对象后,得到BatteryStats.WAKE_TYPE_PARTIAL的唤醒时间,然后累加,其实wakelock有4种,为何只取partial的时间,具体代码google也没解释的很清楚,只是用1句注释打发了我们。得到总时间后,就能够与构造方法中的单位时间waklock消耗电量相乘得到Wakelock消耗的总电量。

Wifi耗电量的计算

首先来看构造方法,来了解1下WIFI的耗电量计算用到了power_profile.xml中的哪些属性:

public WifiPowerCalculator(PowerProfile profile) { mIdleCurrentMa = profile.getAveragePower(PowerProfile.POWER_WIFI_CONTROLLER_IDLE); mTxCurrentMa = profile.getAveragePower(PowerProfile.POWER_WIFI_CONTROLLER_TX); mRxCurrentMa = profile.getAveragePower(PowerProfile.POWER_WIFI_CONTROLLER_RX); }

我们去PowerProfile.java找到上面3个常量代表的属性:

public static final String POWER_WIFI_CONTROLLER_IDLE = "wifi.controller.idle"; public static final String POWER_WIFI_CONTROLLER_RX = "wifi.controller.rx"; public static final String POWER_WIFI_CONTROLLER_TX = "wifi.controller.tx";

知道对应的xml的属性后我们直接看calculateApp方法:

@Override public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs, long rawUptimeUs, int statsType) { final long idleTime = u.getWifiControllerActivity(BatteryStats.CONTROLLER_IDLE_TIME, statsType); final long txTime = u.getWifiControllerActivity(BatteryStats.CONTROLLER_TX_TIME, statsType); final long rxTime = u.getWifiControllerActivity(BatteryStats.CONTROLLER_RX_TIME, statsType); app.wifiRunningTimeMs = idleTime + rxTime + txTime; app.wifiPowerMah = ((idleTime * mIdleCurrentMa) + (txTime * mTxCurrentMa) + (rxTime * mRxCurrentMa)) / (1000*60*60); mTotalAppPowerDrain += app.wifiPowerMah; app.wifiRxPackets = u.getNetworkActivityPackets(BatteryStats.NETWORK_WIFI_RX_DATA, statsType); app.wifiTxPackets = u.getNetworkActivityPackets(BatteryStats.NETWORK_WIFI_TX_DATA, statsType); app.wifiRxBytes = u.getNetworkActivityBytes(BatteryStats.NETWORK_WIFI_RX_DATA, statsType); app.wifiTxBytes = u.getNetworkActivityBytes(BatteryStats.NETWORK_WIFI_TX_DATA, statsType); if (DEBUG && app.wifiPowerMah != 0) { Log.d(TAG, "UID " + u.getUid() + ": idle=" + idleTime + "ms rx=" + rxTime + "ms tx=" + txTime + "ms power=" + BatteryStatsHelper.makemAh(app.wifiPowerMah)); } }

这里的计算方式也是差不多,先根据Uid得到时间,然后乘以构造方法里对应的wifi类型单位时间内消耗电量值,没甚么难点,就不逐一分析,需要注意的是,这里面还计算了wifi传输的数据包的数量和字节数。

蓝牙耗电量的计算

蓝牙关注的power_profile.xml中的属性以下:

public static final String POWER_BLUETOOTH_CONTROLLER_IDLE = "bluetooth.controller.idle"; public static final String POWER_BLUETOOTH_CONTROLLER_RX = "bluetooth.controller.rx"; public static final String POWER_BLUETOOTH_CONTROLLER_TX = "bluetooth.controller.tx";

但是还没有单独为App计算耗电量的,所以这个地方是空的。

@Override public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs, long rawUptimeUs, int statsType) { // No per-app distribution yet. }

摄像头耗电量的计算

CameraPowerCalculator.java

摄像头的耗电量关注的是power_profile.xml中camera.avg属性代表的值,保存到mCameraPowerOnAvg,

public static final String POWER_CAMERA = "camera.avg";

计算方式以下:

@Override public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs, long rawUptimeUs, int statsType) { // Calculate camera power usage. Right now, this is a (very) rough estimate based on the // average power usage for a typical camera application. final BatteryStats.Timer timer = u.getCameraTurnedOnTimer(); if (timer != null) { final long totalTime = timer.getTotalTimeLocked(rawRealtimeUs, statsType) / 1000; app.cameraTimeMs = totalTime; app.cameraPowerMah = (totalTime * mCameraPowerOnAvg) / (1000*60*60); } else { app.cameraTimeMs = 0; app.cameraPowerMah = 0; } }

先计算摄像头打开的时间totalTime,然后根据这个值乘以mCameraPowerOnAvg得到摄像头的耗电量。

手电筒耗电量的计算

FlashlightPowerCalculator.java

public static final String POWER_FLASHLIGHT = "camera.flashlight";

跟摄像头类似,也是先得到时间,然后乘积,不想说了,没意思。

无线电耗电量的计算

MobileRadioPowerCalculator.java

关注的是power_profile.xml中以下3个属性:

/** * Power consumption when screen is on, not including the backlight power. */ public static final String POWER_SCREEN_ON = "screen.on"; /** * Power consumption when cell radio is on but not on a call. */ public static final String POWER_RADIO_ON = "radio.on"; /** * Power consumption when cell radio is hunting for a signal. */ public static final String POWER_RADIO_SCANNING = "radio.scanning";

当无穷量连接上时,根据信号强度不同,耗电量的计算是有区分的,所以在构造方法,当无线电的状态为on时,是要特殊处理的,其他两个状态(active和scan)就正常取值就能够了。

/** * Power consumption when screen is on, not including the backlight power. */ public static final String POWER_SCREEN_ON = "screen.on"; /** * Power consumption when cell radio is on but not on a call. */ public static final String POWER_RADIO_ON = "radio.on"; /** * Power consumption when cell radio is hunting for a signal. */ public static final String POWER_RADIO_SCANNING = "radio.scanning";

计算的方式分两种,以无线电处于active状态的次数为辨别,当active大于0,我们用途于active状态的时间来乘以它的单位耗时。另外一种情况就要根据网络转化的数据包来计算耗电量了。

传感器耗电量的计算

SensorPowerCalculator.java

只关注1个属性:

public static final String POWER_GPS_ON = "gps.on";

计算方式以下:

@Override public void calculateApp(BatterySipper app, BatteryStats.Uid u, long rawRealtimeUs, long rawUptimeUs, int statsType) { // Process Sensor usage final SparseArray sensorStats = u.getSensorStats(); final int NSE = sensorStats.size(); for (int ise = 0; ise < NSE; ise++) { final BatteryStats.Uid.Sensor sensor = sensorStats.valueAt(ise); final int sensorHandle = sensorStats.keyAt(ise); final BatteryStats.Timer timer = sensor.getSensorTime(); final long sensorTime = timer.getTotalTimeLocked(rawRealtimeUs, statsType) / 1000; switch (sensorHandle) { case BatteryStats.Uid.Sensor.GPS: app.gpsTimeMs = sensorTime; app.gpsPowerMah = (app.gpsTimeMs * mGpsPowerOn) / (1000*60*60); break; default: final int sensorsCount = mSensors.size(); for (int i = 0; i < sensorsCount; i++) { final Sensor s = mSensors.get(i); if (s.getHandle() == sensorHandle) { app.sensorPowerMah += (sensorTime * s.getPower()) / (1000*60*60); break; } } break; } } }

当传感器的类型为GPS时,我们计算每一个传感器的时间然后乘以耗电量,和所有的耗电量计算都是1样,不同的是,当传感器不是GPS时,这个时候计算就根据SensorManager得到所有传感器类型,这个里面保存有不同传感器的单位耗电量,这样就可以计算不同传感器的耗电量。

总结

至此我已把App耗电量的计算讲完了(还有硬件),前后花费3天时间,好痛苦(此处1万只草泥马),不过好在自己也算对这个耗电量的理解有了1定的认识。google官方对耗电量的统计给出的解释都是不能代表真实数据,只能作为参考值,由于受power_profile.xml的干扰太大,如果手机厂商没有严格设置这个文件,那可想而知出来的值多是不公道的。

提示

腾讯的GT团队头几天推出了耗电量的计算APK,原理是1样的,大家可以试用下GT

生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生