国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > php开源 > 综合技术 > 算法时间复杂度计算

算法时间复杂度计算

来源:程序员人生   发布时间:2015-06-23 08:15:10 阅读次数:2871次

概述

??1个算法是由控制结构(顺序,分支,循环)和原操作(指固有数据类型的操作)构成。为了便于比较同1问题的不同算法,通常的做法是,从算法当选取1种对所研究的问题来讲是基本操作的原操作,以该基本原操作重复履行的次数作为算法的时间度量。多数情况下,基本原操作是它最深层循环中的原操作,对算法的时间度量最经常使用的是斟酌在最坏的情况下时间复杂度。

时间复杂度的定义

??算法中基本操作重复履行的次数是问题范围n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

根据定义,可以归纳出基本的计算步骤

1. 计算出基本操作的履行次数T(n)
??基本操作即算法中的每条语句(以;号作为分割),语句的履行次数也叫做语句的频度。在做算法分析时,1般默许为斟酌最坏的情况。

2. 计算出T(n)的数量级
??求T(n)的数量级,只要将T(n)进行以下1些操作:疏忽常量、低次幂和最高次幂的系数。令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度
??当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

以上步骤可以简化

1. 找到履行次数最多的语句
2. 计算语句履行次数的数量级
3. 用大O来表示结果

举例

例1(O(n))

public void printsum(int count){ int sum = 1; for(int i= 0; i<n; i++){ sum += i; } System.out.print(sum); }

记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除循环以外,其余的可运行语句的复杂度都是O(1)。
所以printsum的时间复杂度 = for的O(n)+O(1) = 疏忽常量 = O(n)

这里其实可以应用公式 num = n(n+1)/2,对算法进行优化,改成*

public void printsum(int count){ int sum = 0; sum = count*(count+1)/2; System.out.print(sum); }

这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

例2(O(log2n))

int i= 1; while(i<n){ i = i*2; }

设(i=i*2)的频度是t, 则:2t(2的t次方)<=n; 两边去对数t<=log2n,斟酌最坏情况,取最大值t=log2n。T(n) = O(log2n)。
例3(O(n2))

int num=0; for(int i=0;i<n;i++){ for(int j=0;j<n;j++){ num++; } }

时间复杂度为O(n2)。

经常使用算法的时间复杂度

常用排序时间复杂度

参考

http://univasity.iteye.com/blog/1164707
http://www.cnblogs.com/songQQ/archive/2009/10/20/1587122.html

生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生