为何需要动态?
a) Spark默许情况下粗粒度的,先分配好资源再计算。对Spark Streaming而言有高峰值和低峰值,但是他们需要的资源是不1样的,如果依照高峰值的角度的话,就会有大量的资源浪费。
b) Spark Streaming不断的运行,对资源消耗和管理也是我们要斟酌的因素。
Spark Streaming资源动态调剂的时候会面临挑战:
Spark Streaming是依照Batch Duration运行的,Batch Duration需要很多资源,下1次Batch Duration就不需要那末多资源了,调剂资源的时候还没调剂完Batch Duration运行就已过期了。这个时候调剂时间间隔。
Spark Streaming资源动态申请
1. 在SparkContext中默许是不开启动态资源分配的,但是可以通过手动在SparkConf中配置。
// Optionally scale number of executors dynamically based on workload. Exposed for testing.
val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
if (!dynamicAllocationEnabled &&
//参数配置是不是开启资源动态分配
_conf.getBoolean("spark.dynamicAllocation.enabled", false)) {
logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.")
}
_executorAllocationManager =
if (dynamicAllocationEnabled) {
Some(new ExecutorAllocationManager(this, listenerBus, _conf))
} else {
None
}
_executorAllocationManager.foreach(_.start())
2. ExecutorAllocationManager: 有定时器会不断的去扫描Executor的情况,正在运行的Stage,要运行在不同的Executor中,要末增加Executor或减少。
3. ExecutorAllocationManager中schedule方法会被周期性触发进行资源动态调剂。
/**
* This is called at a fixed interval to regulate the number of pending executor requests
* and number of executors running.
*
* First, adjust our requested executors based on the add time and our current needs.
* Then, if the remove time for an existing executor has expired, kill the executor.
*
* This is factored out into its own method for testing.
*/
private def schedule(): Unit = synchronized {
val now = clock.getTimeMillis
updateAndSyncNumExecutorsTarget(now)
removeTimes.retain { case (executorId, expireTime) =>
val expired = now >= expireTime
if (expired) {
initializing = false
removeExecutor(executorId)
}
!expired
}
}
4. 在ExecutorAllocationManager中会在线程池中定时器会不断的运行schedule.
/**
* Register for scheduler callbacks to decide when to add and remove executors, and start
* the scheduling task.
*/
def start(): Unit = {
listenerBus.addListener(listener)
val scheduleTask = new Runnable() {
override def run(): Unit = {
try {
schedule()
} catch {
case ct: ControlThrowable =>
throw ct
case t: Throwable =>
logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t)
}
}
}
// intervalMillis定时器触发时间
executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
}
动态控制消费速率:
Spark Streaming提供了1种弹性机制,流进来的速度和处理速度的关系,是不是来得及处理数据。如果不能来得及的话,他会自动动态控制数据流进来的速度,spark.streaming.backpressure.enabled参数设置。
本课程笔记来源于:
上一篇 [置顶] 成为C++高手之头文件
下一篇 MP3歌词的同步与拖拽设计