国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > 服务器 > Spark修炼之道(高级篇)――Spark源码阅读:第三节 Spark Job的提交

Spark修炼之道(高级篇)――Spark源码阅读:第三节 Spark Job的提交

来源:程序员人生   发布时间:2016-03-30 12:00:43 阅读次数:2616次

前1我们分析了SparkContext的创建,这1节,我们介绍在RDD履行的时候,如何提交job进行分析,一样是下面的源码:

import org.apache.spark.{SparkConf, SparkContext} object SparkWordCount{ def main(args: Array[String]) { if (args.length == 0) { System.err.println("Usage: SparkWordCount") System.exit(1) } val conf = new SparkConf().setAppName("SparkWordCount") val sc = new SparkContext(conf) val file=sc.textFile("file:///hadoopLearning/spark⑴.5.1-bin-hadoop2.4/README.md") val counts=file.flatMap(line=>line.split(" ")) .map(word=>(word,1)) .reduceByKey(_+_) counts.saveAsTextFile("file:///hadoopLearning/spark⑴.5.1-bin-hadoop2.4/countReslut.txt") } }

上面的程序代码counts.saveAsTextFile(“file:///hadoopLearning/spark⑴.5.1-bin-hadoop2.4/countReslut.txt”)会触发action操作,Spark会生成1个Job来履行相干计算

//将RDD保存为Hadoop支持的文件系统,包括本地文件、HDFS等,使用的是Hadoop的OutputFormat类 /** * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class * supporting the key and value types K and V in this RDD. */ def saveAsHadoopFile( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], conf: JobConf = new JobConf(self.context.hadoopConfiguration), codec: Option[Class[_ <: CompressionCodec]] = None): Unit = self.withScope { // Rename this as hadoopConf internally to avoid shadowing (see SPARK⑵038). // hadoop配置信息 val hadoopConf = conf hadoopConf.setOutputKeyClass(keyClass) hadoopConf.setOutputValueClass(valueClass) // Doesnt work in Scala 2.9 due to what may be a generics bug // TODO: Should we uncomment this for Scala 2.10? // conf.setOutputFormat(outputFormatClass) hadoopConf.set("mapred.output.format.class", outputFormatClass.getName) for (c <- codec) { hadoopConf.setCompressMapOutput(true) hadoopConf.set("mapred.output.compress", "true") hadoopConf.setMapOutputCompressorClass(c) hadoopConf.set("mapred.output.compression.codec", c.getCanonicalName) hadoopConf.set("mapred.output.compression.type", CompressionType.BLOCK.toString) } // Use configured output committer if already set if (conf.getOutputCommitter == null) { hadoopConf.setOutputCommitter(classOf[FileOutputCommitter]) } FileOutputFormat.setOutputPath(hadoopConf, SparkHadoopWriter.createPathFromString(path, hadoopConf)) //调用saveAsHadoopDataset方法进行RDD保存 saveAsHadoopDataset(hadoopConf) }

跳转到saveAsHadoopDataset,并调用其self.context.runJob即SparkContext中的runJob方法

/** * Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for * that storage system. The JobConf should set an OutputFormat and any output paths required * (e.g. a table name to write to) in the same way as it would be configured for a Hadoop * MapReduce job. */ def saveAsHadoopDataset(conf: JobConf): Unit = self.withScope { // Rename this as hadoopConf internally to avoid shadowing (see SPARK⑵038). val hadoopConf = conf val wrappedConf = new SerializableConfiguration(hadoopConf) val outputFormatInstance = hadoopConf.getOutputFormat val keyClass = hadoopConf.getOutputKeyClass val valueClass = hadoopConf.getOutputValueClass if (outputFormatInstance == null) { throw new SparkException("Output format class not set") } if (keyClass == null) { throw new SparkException("Output key class not set") } if (valueClass == null) { throw new SparkException("Output value class not set") } SparkHadoopUtil.get.addCredentials(hadoopConf) logDebug("Saving as hadoop file of type (" + keyClass.getSimpleName + ", " + valueClass.getSimpleName + ")") if (isOutputSpecValidationEnabled) { // FileOutputFormat ignores the filesystem parameter val ignoredFs = FileSystem.get(hadoopConf) hadoopConf.getOutputFormat.checkOutputSpecs(ignoredFs, hadoopConf) } val writer = new SparkHadoopWriter(hadoopConf) writer.preSetup() val writeToFile = (context: TaskContext, iter: Iterator[(K, V)]) => { val config = wrappedConf.value // Hadoop wants a 32-bit task attempt ID, so if ours is bigger than Int.MaxValue, roll it // around by taking a mod. We expect that no task will be attempted 2 billion times. val taskAttemptId = (context.taskAttemptId % Int.MaxValue).toInt val (outputMetrics, bytesWrittenCallback) = initHadoopOutputMetrics(context) writer.setup(context.stageId, context.partitionId, taskAttemptId) writer.open() var recordsWritten = 0L Utils.tryWithSafeFinally { while (iter.hasNext) { val record = iter.next() writer.write(record._1.asInstanceOf[AnyRef], record._2.asInstanceOf[AnyRef]) // Update bytes written metric every few records maybeUpdateOutputMetrics(bytesWrittenCallback, outputMetrics, recordsWritten) recordsWritten += 1 } } { writer.close() } writer.commit() bytesWrittenCallback.foreach { fn => outputMetrics.setBytesWritten(fn()) } outputMetrics.setRecordsWritten(recordsWritten) } //调用runJob方法履行RDD计算 self.context.runJob(self, writeToFile) writer.commitJob() }

SparkContext中的runJob方法,该方法中再调用DAGScheduler中的runJob方法,具体源码以下:

//SparkContext中的runJob方法 /** * Run a function on a given set of partitions in an RDD and pass the results to the given * handler function. This is the main entry point for all actions in Spark. */ def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], resultHandler: (Int, U) => Unit): Unit = { if (stopped.get()) { throw new IllegalStateException("SparkContext has been shutdown") } val callSite = getCallSite val cleanedFunc = clean(func) logInfo("Starting job: " + callSite.shortForm) if (conf.getBoolean("spark.logLineage", false)) { logInfo("RDDs recursive dependencies: " + rdd.toDebugString) } //调用dagScheduler的runJob方法 dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get) progressBar.foreach(_.finishAll()) rdd.doCheckpoint() }

DAGScheduler中的runJob方法,该方法中通过submitJob方法进行任务的提交,具体源码以下:

//DAGScheduler中的runJob方法 def runJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, resultHandler: (Int, U) => Unit, properties: Properties): Unit = { val start = System.nanoTime //调用DAGScheduler中的submitJob方法,返回JobWaiter对象,该对象等待job完成,完成后调用resultHandler函数进行后续处理 val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties) waiter.awaitResult() match { //处理成功 case JobSucceeded => logInfo("Job %d finished: %s, took %f s".format (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9)) //处理失败 case JobFailed(exception: Exception) => logInfo("Job %d failed: %s, took %f s".format (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9)) // SPARK⑻644: Include user stack trace in exceptions coming from DAGScheduler. val callerStackTrace = Thread.currentThread().getStackTrace.tail exception.setStackTrace(exception.getStackTrace ++ callerStackTrace) throw exception } }

submitJob方法的具体源码以下:

//DAGScheduler中的submitJob方法 /** * Submit a job to the job scheduler and get a JobWaiter object back. The JobWaiter object * can be used to block until the the job finishes executing or can be used to cancel the job. */ def submitJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, resultHandler: (Int, U) => Unit, properties: Properties): JobWaiter[U] = { // Check to make sure we are not launching a task on a partition that does not exist. val maxPartitions = rdd.partitions.length partitions.find(p => p >= maxPartitions || p < 0).foreach { p => throw new IllegalArgumentException( "Attempting to access a non-existent partition: " + p + ". " + "Total number of partitions: " + maxPartitions) } val jobId = nextJobId.getAndIncrement() if (partitions.size == 0) { return new JobWaiter[U](this, jobId, 0, resultHandler) } assert(partitions.size > 0) val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _] //创建JobWaiter对象 val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler) //类型为DAGSchedulerEventProcessLoop的对象eventProcessLoop,将任务提交JobSubmitted放置在event队列当中,eventThread后台线程将对该任务提交进行处理 eventProcessLoop.post(JobSubmitted( jobId, rdd, func2, partitions.toArray, callSite, waiter, SerializationUtils.clone(properties))) waiter }

eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))将任务提交JobSubmitted放置在event队列当中,eventThread后台线程将对该任务提交进行处理,该eventThread被定义在DAGSchedulerEventProcessLoop的父类EventLoop当中,其源码以下:

/** * An event loop to receive events from the caller and process all events in the event thread. It * will start an exclusive event thread to process all events. * * Note: The event queue will grow indefinitely. So subclasses should make sure `onReceive` can * handle events in time to avoid the potential OOM. */ private[spark] abstract class EventLoop[E](name: String) extends Logging { private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]() private val stopped = new AtomicBoolean(false) //处理envent队列的后台线程 private val eventThread = new Thread(name) { setDaemon(true) override def run(): Unit = { try { while (!stopped.get) { //获得事件处理 val event = eventQueue.take() try { //调用onReceive方法,该方法在EventLoop中是抽象方法,由子类实现 onReceive(event) } catch { case NonFatal(e) => { try { onError(e) } catch { case NonFatal(e) => logError("Unexpected error in " + name, e) } } } } } catch { case ie: InterruptedException => // exit even if eventQueue is not empty case NonFatal(e) => logError("Unexpected error in " + name, e) } } } def start(): Unit = { if (stopped.get) { throw new IllegalStateException(name + " has already been stopped") } // Call onStart before starting the event thread to make sure it happens before onReceive onStart() eventThread.start() } def stop(): Unit = { if (stopped.compareAndSet(false, true)) { eventThread.interrupt() var onStopCalled = false try { eventThread.join() // Call onStop after the event thread exits to make sure onReceive happens before onStop onStopCalled = true onStop() } catch { case ie: InterruptedException => Thread.currentThread().interrupt() if (!onStopCalled) { // ie is thrown from `eventThread.join()`. Otherwise, we should not call `onStop` since // its already called. onStop() } } } else { // Keep quiet to allow calling `stop` multiple times. } } //post方法,将事件放置到event 队列,由event thread处理 /** * Put the event into the event queue. The event thread will process it later. */ def post(event: E): Unit = { eventQueue.put(event) } //略去其它方法

org.apache.spark.scheduler.DAGScheduler.scala文件中定义了DAGSchedulerEventProcessLoop,该类继承了EventLoop,对onReceive方法进行了实现,具体源码以下:

private[scheduler] class DAGSchedulerEventProcessLoop(dagScheduler: DAGScheduler) extends EventLoop[DAGSchedulerEvent]("dag-scheduler-event-loop") with Logging { private[this] val timer = dagScheduler.metricsSource.messageProcessingTimer /** * The main event loop of the DAG scheduler. */ //onReceive方法 override def onReceive(event: DAGSchedulerEvent): Unit = { val timerContext = timer.time() try { //调用doOnReceive方法 doOnReceive(event) } finally { timerContext.stop() } } //doOnReceive方法的具体实现 private def doOnReceive(event: DAGSchedulerEvent): Unit = event match { //处理JobSubmitted事件 case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) => //调用dagScheduler的handleJobSubmitted方法 dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) //处理其它相干事件 case StageCancelled(stageId) => dagScheduler.handleStageCancellation(stageId) case JobCancelled(jobId) => dagScheduler.handleJobCancellation(jobId) case JobGroupCancelled(groupId) => dagScheduler.handleJobGroupCancelled(groupId) case AllJobsCancelled => dagScheduler.doCancelAllJobs() case ExecutorAdded(execId, host) => dagScheduler.handleExecutorAdded(execId, host) case ExecutorLost(execId) => dagScheduler.handleExecutorLost(execId, fetchFailed = false) case BeginEvent(task, taskInfo) => dagScheduler.handleBeginEvent(task, taskInfo) case GettingResultEvent(taskInfo) => dagScheduler.handleGetTaskResult(taskInfo) case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) => dagScheduler.handleTaskCompletion(completion) case TaskSetFailed(taskSet, reason, exception) => dagScheduler.handleTaskSetFailed(taskSet, reason, exception) case ResubmitFailedStages => dagScheduler.resubmitFailedStages() } override def onError(e: Throwable): Unit = { logError("DAGSchedulerEventProcessLoop failed; shutting down SparkContext", e) try { dagScheduler.doCancelAllJobs() } catch { case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t) } dagScheduler.sc.stop() } override def onStop(): Unit = { // Cancel any active jobs in postStop hook dagScheduler.cleanUpAfterSchedulerStop() } }

从上面的代码可以看到,最后调用的dagScheduler.handleJobSubmitted方法完成全部job的提交。后面便是如何将job划分成各个Stage及TaskSet,提交到各个Worker节点履行,这部份内容,我们在下1节中进行讲授

生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生