这里我用4.2.2,下载好后,解压开,把 phoenix⑷.2.2-server.jar 拷贝到所有RegionServer的lib目录下 /usr/lib/hbase/lib
我们建立sql 名叫 us_population.sql 内容是
CREATE TABLE IF NOT EXISTS us_population ( state CHAR(2) NOT NULL, city VARCHAR NOT NULL, population BIGINT CONSTRAINT my_pk PRIMARY KEY (state, city));
建立1个文件 us_population.csv
NY,New York,8143197
CA,Los Angeles,3844829
IL,Chicago,2842518
TX,Houston,2016582
PA,Philadelphia,1463281
AZ,Phoenix,1461575
TX,San Antonio,1256509
CA,San Diego,1255540
TX,Dallas,1213825
CA,San Jose,912332
再创建1个文件 us_population_queries.sql
SELECT state as "State",count(city) as "City Count",sum(population) as "Population Sum" FROM us_population GROUP BY state ORDER BY sum(population) DESC;
然后1起履行
phoenix⑷.2.2-bin/bin/psql.py host1,host2:2181 us_population.sql us_population.csv us_population_queries.sql
这边记得把 host1 和 host2 换成你的zookeeper地址
这条命令你同时做了 创建1个表,插入数据,查询结果 3件事情
[root@host1 ~]# phoenix⑷.2.2-bin/bin/psql.py host1,host2:2181 us_population.sql us_population.csv us_population_queries.sql
15/03/04 17:14:23 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/03/04 17:14:24 WARN impl.MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-phoenix.properties,hadoop-metrics2.properties
no rows upserted
Time: 0.726 sec(s)
csv columns from database.
CSV Upsert complete. 10 rows upserted
Time: 0.103 sec(s)
St City Count Population Sum
-- ---------------------------------------- ----------------------------------------
NY 1 8143197
CA 3 6012701
TX 3 4486916
IL 1 2842518
PA 1 1463281
AZ 1 1461575
Time: 0.048 sec(s)
用hbase shell 看下会发现多出来1个 US_POPULATION 表,用scan 命令查看1下这个表的数据
hbase(main):002:0> scan 'US_POPULATION'
ROW COLUMN+CELL
AZPhoenix column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x16MG
AZPhoenix column=0:_0, timestamp=1425460467206, value=
CALos Angeles column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00:xAAxDD
CALos Angeles column=0:_0, timestamp=1425460467206, value=
CASan Diego column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x13(t
CASan Diego column=0:_0, timestamp=1425460467206, value=
CASan Jose column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x0DxEBxCC
CASan Jose column=0:_0, timestamp=1425460467206, value=
ILChicago column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00+_x96
ILChicago column=0:_0, timestamp=1425460467206, value=
NYNew York column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00|A]
NYNew York column=0:_0, timestamp=1425460467206, value=
PAPhiladelphia column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x16SxF1
PAPhiladelphia column=0:_0, timestamp=1425460467206, value=
TXDallas column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x12x85x81
TXDallas column=0:_0, timestamp=1425460467206, value=
TXHouston column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x1ExC5F
TXHouston column=0:_0, timestamp=1425460467206, value=
TXSan Antonio column=0:POPULATION, timestamp=1425460467206, value=x80x00x00x00x00x13,=
TXSan Antonio column=0:_0, timestamp=1425460467206, value=
10 row(s) in 0.2220 seconds
会发现
- 之前定义的PRIMARY KEY 为 state, city ,因而Phoenix就把你输入的state 和 city的值拼起来成为rowkey
- 其他的字段还是依照列名去保存,默许的列簇为 0
- 还有1个0:_0 这个列是没有值的,这个是Phoenix处于性能方面斟酌增加的1个列,不用管这个列
命令行方式
然后履行sqlline.py
$ ./sqlline.py localhost
可以进入命令行模式
0: jdbc:phoenix:localhost>
退出命令行的方式是履行 !quit
0: jdbc:phoenix:localhost>!quit
命令开头需要1个感叹号,使用help可以打印出所有命令
0: jdbc:phoenix:localhost> help
!all Execute the specified SQL against all the current connections
!autocommit Set autocommit mode on or off
!batch Start or execute a batch of statements
!brief Set verbose mode off
!call Execute a callable statement
!close Close the current connection to the database
!closeall Close all current open connections
!columns List all the columns for the specified table
!commit Commit the current transaction (if autocommit is off)
!connect Open a new connection to the database.
!dbinfo Give metadata information about the database
!describe Describe a table
!dropall Drop all tables in the current database
!exportedkeys List all the exported keys for the specified table
!go Select the current connection
!help Print a summary of command usage
!history Display the command history
!importedkeys List all the imported keys for the specified table
!indexes List all the indexes for the specified table
!isolation Set the transaction isolation for this connection
!list List the current connections
!manual Display the SQLLine manual
!metadata Obtain metadata information
!nativesql Show the native SQL for the specified statement
!outputformat Set the output format for displaying results
(table,vertical,csv,tsv,xmlattrs,xmlelements)
!primarykeys List all the primary keys for the specified table
!procedures List all the procedures
!properties Connect to the database specified in the properties file(s)
!quit Exits the program
!reconnect Reconnect to the database
!record Record all output to the specified file
!rehash Fetch table and column names for command completion
!rollback Roll back the current transaction (if autocommit is off)
!run Run a script from the specified file
!save Save the current variabes and aliases
!scan Scan for installed JDBC drivers
!script Start saving a script to a file
!set Set a sqlline variable
!sql Execute a SQL command
!tables List all the tables in the database
!typeinfo Display the type map for the current connection
!verbose Set verbose mode on
建立employee的映照表
数据准备
然后我们来建立1个映照表,映照我之前建立过的1个hbase表 employee
hbase(main):003:0> describe 'employee'
DESCRIPTION ENABLED
'employee', {NAME => 'company', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => true
'1', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', I
N_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'family', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLIC
ATION_SCOPE => '0', VERSIONS => '1', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => '
false', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
1 row(s) in 0.1120 seconds
可以看出employee有连个列簇 company 和 family
hbase(main):016:0> scan 'employee'
ROW COLUMN+CELL
row1 column=company:name, timestamp=1425537923391, value=ted
row1 column=company:position, timestamp=1425537950471, value=worker
row1 column=family:tel, timestamp=1425537956413, value=13600912345
row2 column=family:tel, timestamp=1425537994087, value=18942245698
row2 column=family:name, timestamp=1425537975610, value=michael
row2 column=family:position, timestamp=1425537985594, value=manager
2 row(s) in 0.0340 seconds
有两条数据。如果没有这些数据的同学可以用以下命令创建
create 'employee','company','family'
put 'employee','row1','company:name','ted'
put 'employee','row1','company:position','worker'
put 'employee','row1','family:tel','13600912345'
put 'employee','row2','company:name','michael'
put 'employee','row2','company:position','manager'
put 'employee','row2','family:tel','1894225698'
scan 'employee'
关于映照表
在建立映照表之前要说明的是,Phoenix是大小写敏感的,并且所有命令都是大写,如果你建的表名没有用双引号括起来,那末不管你输入的是大写还是小写,建立出来的表名都是大写的,如果你需要建立出同时包括大写和小写的表名和字段名,请把表名或字段名用双引号括起来
你可以建立读写的表或只读的表,他们的区分以下
- 读写表:如果你定义的列簇不存在,会被自动建立出来,并且赋以空值
- 只读表:你定义的列簇必须事前存在
建立映照
0: jdbc:phoenix:localhost> CREATE TABLE IF NOT EXISTS "employee" ("no" CHAR(4) NOT NULL PRIMARY KEY, "company"."name" VARCHAR(30),"company"."position" VARCHAR(20), "family"."tel" CHAR(11), "family"."age" INTEGER);
2 rows affected (1.745 seconds)
这行语句有几个注意点
- IF NOT EXISTS可以保证如果已有建立过这个表,配置不会被覆盖
- 作为rowkey的字段用 PRIMARY KEY标定
- 列簇用 columnFamily.columnName 来表示
- family.age 是新增的字段,我之前建立测试数据的时候没有建立这个字段的缘由是在hbase shell下没法直接写入数字型,等等我用UPSERT 命令插入数据的时候你就能够看到真实的数字型在hbase 下是如何显示的
建立好后,查询1下数据
0: jdbc:phoenix:localhost> SELECT * FROM "employee";
+------+--------------------------------+----------------------+-------------+------------------------------------------+
| no | name | position | tel | age |
+------+--------------------------------+----------------------+-------------+------------------------------------------+
| row1 | ted | worker | 13600912345 | null |
| row2 | michael | manager | 1894225698 | null |
+------+--------------------------------+----------------------+-------------+------------------------------------------+
插入/更改数据
插入或更改数据在Phoenix里面是1个命令叫 UPSERT 意思是 update + insert
我们插入1条数据试试
UPSERT INTO "employee" VALUES ('row3','billy','worker','16974681345',33);
查询1下数据
0: jdbc:phoenix:localhost> SELECT * FROM "employee";
+------+--------------------------------+----------------------+-------------+------------------------------------------+
| no | name | position | tel | age |
+------+--------------------------------+----------------------+-------------+------------------------------------------+
| row1 | ted | worker | 13600912345 | null |
| row2 | michael | manager | 1894225698 | null |
| row3 | billy | worker | 16974681345 | 33 |
+------+--------------------------------+----------------------+-------------+------------------------------------------+
3 rows selected (0.195 seconds)
我们去hbase里面看1下数据
hbase(main):054:0> scan 'employee'
ROW COLUMN+CELL
row1 column=company:_0, timestamp=1425543735420, value=
row1 column=company:name, timestamp=1425543735274, value=ted
row1 column=company:position, timestamp=1425543735323, value=worker
row1 column=family:tel, timestamp=1425543735420, value=13600912345
row2 column=company:_0, timestamp=1425543735767, value=
row2 column=company:name, timestamp=1425543735608, value=michael
row2 column=company:position, timestamp=1425543735720, value=manager
row2 column=family:tel, timestamp=1425543735767, value=1894225698
row3 column=company:_0, timestamp=1425543857594, value=
row3 column=company:name, timestamp=1425543857594, value=billy
row3 column=company:position, timestamp=1425543857594, value=worker
row3 column=family:age, timestamp=1425543857594, value=x80x00x00!
row3 column=family:tel, timestamp=1425543857594, value=16974681345
3 row(s) in 0.0650 seconds
最后那个 x80x00x00! 就是数字型在hbase中序列化成了字节的存储情势
GUI方式的安装方法在 http://phoenix.apache.org/installation.html 这边不讲了,由于我自己也没弄起来,而且那个界面实在太丑了,看了不忍心使用。