原图
|
处理结果
|
参数
|
2值化阈值:edgeThresh=100
distanceTransform参数:
distanceType = DIST_L1
maskSize = DIST_MASK_5
|
distanceTransform
计算2值图象,任意点到最近背景点的距离,1般为非零点到最近零点的距离。
distanceTransform函数计算2值图象中所有像素力其最近的值为0像素的近似距离。明显如果像素本身为0,则其距离明显也为0。
函数原型:
void distanceTransform( InputArray src, OutputArray dst,
int distanceType, int maskSize, int dstType=CV_32F);
参数说明:
src:源图象,需要采取2值化后的8位灰度图象
dst:目标图象,可以是8位或32位浮点,尺寸和src相同
distanceType:计算距离的方式,具体以下
DIST_USER = ⑴, //!< User defined distance
DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2|
DIST_L2 = 2, //!< the simple euclidean distance
DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|)
DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
maskSize:掩膜的尺寸,具体以下:
DIST_MASK_3 = 3, //!< mask=3
DIST_MASK_5 = 5, //!< mask=5
DIST_MASK_PRECISE = 0 //!<
PS:当distanceType = DIST_L1或DIST_C时,maskSize强迫为3(设为5也没用)
dstType:目标图象的类型,默许为CV_32F;
|
Example代码
#include <opencv2/core/utility.hpp> #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include <stdio.h> using namespace std; using namespace cv; int maskSize0 = DIST_MASK_5; int voronoiType = ⑴; int edgeThresh = 100; int distType0 = DIST_L1; // The output and temporary images Mat gray; // threshold trackbar callback static void onTrackbar( int, void* ) { static const Scalar colors[] = { Scalar(0,0,0), Scalar(255,0,0), Scalar(255,128,0), Scalar(255,255,0), Scalar(0,255,0), Scalar(0,128,255), Scalar(0,255,255), Scalar(0,0,255), Scalar(255,0,255) }; int maskSize = voronoiType >= 0 ? DIST_MASK_5 : maskSize0; int distType = voronoiType >= 0 ? DIST_L2 : distType0; Mat edge = gray >= edgeThresh, dist, labels, dist8u; if( voronoiType < 0 ) distanceTransform( edge, dist, distType, maskSize ); else distanceTransform( edge, dist, labels, distType, maskSize, voronoiType ); if( voronoiType < 0 ) { // begin "painting" the distance transform result dist *= 5000; pow(dist, 0.5, dist); Mat dist32s, dist8u1, dist8u2; dist.convertTo(dist32s, CV_32S, 1, 0.5); dist32s &= Scalar::all(255); dist32s.convertTo(dist8u1, CV_8U, 1, 0); dist32s *= ⑴; dist32s += Scalar::all(255); dist32s.convertTo(dist8u2, CV_8U); Mat planes[] = {dist8u1, dist8u2, dist8u2}; merge(planes, 3, dist8u); } else { dist8u.create(labels.size(), CV_8UC3); for( int i = 0; i < labels.rows; i++ ) { const int* ll = (const int*)labels.ptr(i); const float* dd = (const float*)dist.ptr(i); uchar* d = (uchar*)dist8u.ptr(i); for( int j = 0; j < labels.cols; j++ ) { int idx = ll[j] == 0 || dd[j] == 0 ? 0 : (ll[j]⑴)%8 + 1; float scale = 1.f/(1 + dd[j]*dd[j]*0.0004f); int b = cvRound(colors[idx][0]*scale); int g = cvRound(colors[idx][1]*scale); int r = cvRound(colors[idx][2]*scale); d[j*3] = (uchar)b; d[j*3+1] = (uchar)g; d[j*3+2] = (uchar)r; } } } imshow("Distance Map", dist8u ); } static void help() { printf("\nProgram to demonstrate the use of the distance transform function between edge images.\n" "Usage:\n" "./distrans [image_name -- default image is ../data/stuff.jpg]\n" "\nHot keys: \n" "\tESC - quit the program\n" "\tC - use C/Inf metric\n" "\tL1 - use L1 metric\n" "\tL2 - use L2 metric\n" "\t3 - use 3x3 mask\n" "\t5 - use 5x5 mask\n" "\t0 - use precise distance transform\n" "\tv - switch to Voronoi diagram mode\n" "\tp - switch to pixel-based Voronoi diagram mode\n" "\tSPACE - loop through all the modes\n\n"); } const char* keys = { "{@image |../data/stuff.jpg|input image file}" }; int main( int argc, const char** argv ) { help(); CommandLineParser parser(argc, argv, keys); string filename = parser.get<string>(0); gray = imread(filename.c_str(), 0); if(gray.empty()) { printf("Cannot read image file: %s\n", filename.c_str()); help(); return ⑴; } namedWindow("Distance Map", 1); createTrackbar("Brightness Threshold", "Distance Map", &edgeThresh, 255, onTrackbar, 0); for(;;) { // Call to update the view onTrackbar(0, 0); int c = waitKey(0) & 255; if( c == 27 ) break; if( c == 'c' || c == 'C' || c == '1' || c == '2' || c == '3' || c == '5' || c == '0' ) voronoiType = ⑴; if( c == 'c' || c == 'C' ) distType0 = DIST_C; else if( c == '1' ) distType0 = DIST_L1; else if( c == '2' ) distType0 = DIST_L2; else if( c == '3' ) maskSize0 = DIST_MASK_3; else if( c == '5' ) maskSize0 = DIST_MASK_5; else if( c == '0' ) maskSize0 = DIST_MASK_PRECISE; else if( c == 'v' ) voronoiType = 0; else if( c == 'p' ) voronoiType = 1; else if( c == ' ' ) { if( voronoiType == 0 ) voronoiType = 1; else if( voronoiType == 1 ) { voronoiType = ⑴; maskSize0 = DIST_MASK_3; distType0 = DIST_C; } else if( distType0 == DIST_C ) distType0 = DIST_L1; else if( distType0 == DIST_L1 ) distType0 = DIST_L2; else if( maskSize0 == DIST_MASK_3 ) maskSize0 = DIST_MASK_5; else if( maskSize0 == DIST_MASK_5 ) maskSize0 = DIST_MASK_PRECISE; else if( maskSize0 == DIST_MASK_PRECISE ) voronoiType = 0; } } return 0; }