国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > php开源 > php教程 > Hdoj 5195 DZY Loves Topological Sorting 【拓扑】+【线段树】

Hdoj 5195 DZY Loves Topological Sorting 【拓扑】+【线段树】

来源:程序员人生   发布时间:2015-06-05 09:26:13 阅读次数:2419次

DZY Loves Topological Sorting

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 922 Accepted Submission(s): 269

Problem Description
A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u→v) from vertex u to vertex v, u comes before v in the ordering.
Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k edges from the graph.

Input
The input consists several test cases. (TestCase≤5)
The first line, three integers n,m,k(1≤n,m≤105,0≤k≤m).
Each of the next m lines has two integers: u,v(u≠v,1≤u,v≤n), representing a direct edge(u→v).

Output
For each test case, output the lexicographically largest topological ordering.

Sample Input
5 5 2
1 2
4 5
2 4
3 4
2 3
3 2 0
1 2
1 3

Sample Output
5 3 1 2 4
1 3 2

Hint
Case 1.
Erase the edge (2->3),(4->5).
And the lexicographically largest topological ordering is (5,3,1,2,4).

题意:给你n条边,删去不多于K条边,使输出的字典序最大!!
策略:我们每次都找小于等于当前K的较大的数输出就行了,
需明白:1,每减去1个入度都是减去1条边。
2:找到1个点以后,1定要将对应点的入度变成最大值,以防后面还有可能被找到。
代码:

#include <cstdio> #include <cstring> #include <vector> #include <iostream> #include <algorithm> const int M = 1e5+5; const int INF = 0x3f3f3f3f; using namespace std; int c[M<<2], in[M]; vector<int > m[M]; vector<int > ans; int n, mm, k; void update(int p, int x, int l, int r, int pos){ if(l == r){ c[pos] = x; return ; } int mid = (l+r)>>1; if(p <= mid) update(p, x, l, mid, pos<<1); //left和right都是代表的对应的点。 else update(p, x, mid+1, r, pos<<1|1); c[pos] = min(c[pos<<1], c[pos<<1|1]); } int query(int l, int r, int pos){ if(l == r) return l; int mid = (l+r)>>1; if(c[pos<<1|1] <= k) return query(mid+1, r, pos<<1|1);//每次都是尽可能选比较大的点 return query(l, mid,pos<<1); } void topo(){ for(int i = 0; i < n; ++ i){ int temp = query(1, n, 1); k -= in[temp];//表示去掉几个点 ans.push_back(temp); update(temp, INF, 1, n, 1); //找到后就要更新 in[temp] = INF; //1定要变成正无穷 for(int i = 0; i < m[temp].size(); ++ i){ int v = m[temp][i]; --in[v]; update(v, in[v], 1, n, 1); } } } int main(){ while(scanf("%d%d%d", &n, &mm, &k) == 3){ for(int i = 0; i <= n; ++ i){ m[i].clear(); in[i] = 0; } int u, v; for(int i = 0; i < mm; ++ i){ scanf("%d%d", &u, &v); ++in[v]; m[u].push_back(v); } for(int i = 1; i <= n; ++ i){ update(i, in[i], 1, n, 1); } ans.clear(); topo(); printf("%d", ans[0]); for(int i = 1; i < n; ++ i) printf(" %d", ans[i]); printf(" "); } return 0; }
生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生