国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > php开源 > php教程 > 数据结构基础(2) --顺序查找 & 二分查找

数据结构基础(2) --顺序查找 & 二分查找

来源:程序员人生   发布时间:2015-01-06 09:01:05 阅读次数:3121次

顺序查找

适用范围:

没有进行排序的数据序列

缺点:

速度非常慢, 效力为O(N)

//实现 template <typename Type> Type *sequenceSearch(Type *begin, Type *end, const Type &searchValue) throw(std::range_error) { if ((begin == end) || (begin == NULL) || (end == NULL)) throw std::range_error("pointer unavailable"); for (Type *index = begin; index < end; ++index) { if (*index == searchValue) return index; } return end; } template <typename Type> Type *sequenceSearch(Type *array, int length, const Type &searchValue) throw(std::range_error) { return sequenceSearch(array, array+length, searchValue); }

迭代2分查找

利用范围:

数据必须首先排序,才能利用2分查找;效力为(logN)

算法思想:

比方数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用2分查找的算法履行的话,其顺序为:

    1.第1步查找中间元素,即5,由于5<6,则6必定在5以后的数组元素中,那末就在{6, 7, 8, 9}中查找,

    2.寻觅{6, 7, 8, 9}的中位数,为7,7>6,则6应当在7左侧的数组元素中,那末只剩下6,即找到了。

    2分查找算法就是不断将数组进行对半分割,每次拿中间元素和目标元素进行比较

//实现:迭代2分 template <typename Type> Type *binarySearch(Type *begin, Type *end, const Type &searchValue) throw(std::range_error) { if ((begin == end) || (begin == NULL) || (end == NULL)) throw std::range_error("pointer unavailable"); /**注意:此处high为end⑴,其实不是end 由于在后续的查找进程中,可能会以下操作 (*high), 或等价的操作 此时应当访问的是最后1个元素, 必须注意不能对数组进行越界访问! */ Type *low = begin, *high = end⑴; while (low <= high) { //计算中间元素 Type *mid = low + (high-low)/2; //如果中间元素的值==要找的数值, 则直接返回 if (*mid == searchValue) return mid; //如果要找的数比中间元素大, 则在数组的后半部份查找 else if (searchValue > *mid) low = mid + 1; //如果要找的数比中间元素小, 则在数组的前半部份查找 else high = mid - 1; } return end; } template <typename Type> Type *binarySearch(Type *array, int length, const Type &searchValue) throw(std::range_error) { return binarySearch(array, array+length, searchValue); }

递归简介

递归就是递归...(自己调用自己),递归的是神,迭代的是人;

 

递归与非递归的比较

//递归求解斐波那契数列 unsigned long ficonacciRecursion(int n) { if (n == 1 || n == 2) return 1; else return ficonacciRecursion(n⑴) + ficonacciRecursion(n⑵); }
//非递归求解斐波那契数列 unsigned long ficonacciLoop(int n) { if (n == 1 || n == 2) return 1; unsigned long first = 1, second = 1; unsigned long ans = first + second; for (int i = 3; i <= n; ++i) { ans = first + second; first = second; second = ans; } return ans; }

递归2分查找

算法思想犹如迭代2分查找;

//实现 template <typename Type> Type *binarySearchByRecursion(Type *front, Type *last, const Type &searchValue) throw(std::range_error) { if ((front == NULL) || (last == NULL)) throw std::range_error("pointer unavailable"); if (front <= last) { Type *mid = front + (last-front)/2; if (*mid == searchValue) return mid; else if (searchValue > *mid) return binarySearchByRecursion(mid+1, last, searchValue); else return binarySearchByRecursion(front, mid⑴, searchValue); } return NULL; } template <typename Type> int binarySearchByRecursion(Type *array, int left, int right, const Type &searchValue) throw (std::range_error) { if (array == NULL) throw std::range_error("pointer unavailable"); if (left <= right) { int mid = left + (right-left)/2; if (array[mid] == searchValue) return mid; else if (searchValue < array[mid]) return binarySearchByRecursion(array, left, mid⑴, searchValue); else return binarySearchByRecursion(array, mid+1, right, searchValue); } return ⑴; }

小结:

其实C++ 的STL已实现好了std::binary_search(),在用的时候我们只需调用便可, 但是2分算法的思想还是非常重要的, 在求解1些较为复杂的问题时, 我们经常能够看到2分的身影.

生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生