国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > 数据库 > 数据库应用 > 数据结构 - 赫夫曼树及其应用

数据结构 - 赫夫曼树及其应用

来源:程序员人生   发布时间:2015-05-12 09:18:06 阅读次数:3477次

赫夫曼树及其利用

    赫夫曼(Huffman)树又称最优树,是1类带权路径长度最短的树,有着广泛的利用。

1 基本概念
① 结点路径:从树中1个结点到另外一个结点的之间的分支构成这两个结点之间的路径。
② 路径长度:结点路径上的分支数目称为路径长度。
③ 树的路径长度:从树根到每个结点的路径长度之和。
④ 结点的带权路径长度:从树的根结点到该结点的的路径长度与结点的权(值)的乘积。
权(值):各种开消、代价、频度等的抽象称呼。
⑤ 树的带权路径长度:树中所有叶子结点的带权路径长度之和,记做:
WPL=w1?l1+w2?l2+?+wn?ln=∑wi?li (i=1,2,?,n)
其中:n为叶子结点的个数;wi为第i个结点的权值; li为第i个结点的路径长度。
⑥ Huffman树:具有n个叶子结点(每一个结点的权值为wi) 的2叉树不止1棵,但在所有的这些2叉树中,一定存在1棵WPL值最小的树,称这棵树为Huffman树(或称最优树) 。

Huffman树的构造

根据n个权值 {w1, w2, ?,wn},构造成n棵2叉树的集合F={T1, T2, ?,Tn},其中每棵2叉树只有1个权值为wi的根结点,没有左、右子树;
② 在F当选取两棵根结点权值最小的树作为左、右子树构造1棵新的2叉树,且新的2叉树根结点权值为其左、右子树根结点的权值之和;
③ 在F中删除这两棵树,同时将新得到的树加入F中;
④ 重复②、③,直到F只含1颗树为止。
构造Huffman树时,为了规范,规定:
F={T1,T2, ?,Tn}中权值小的作为新构造的2叉树的左子树,权值大的作为右子树; 在取值相等时,深度小的作为新构造的2叉树的左子树,深度大的作为右子树。

例:构造权值集合为W={8, 3, 4, 6, 5, 5}的 Huffman树。

赫夫曼编码及其算法

1 Huffman编码
在电报收发等数据通讯中,常需要将传送的文字转换成由2进制字符0、1组成的字符串来传输。为了使收发的速度提高,就要求电文编码要尽量地短。
要设计长短不等的编码,须保证任意字符的编码都不是另外一个字符编码的前缀,这类编码称为前缀编码。
Huffman树可以用来构造编码长度不等且译码不产生2义性的编码。
设电文中的字符集C={c1,c2, ?,ci, ?,cn},各个字符出现的次数或频度集W={w1,w2, ?,wi, ?,wn}。
Huffman编码方法
以字符集C作为叶子结点,次数或频度集W作为结点的权值来构造 Huffman树。规定Huffman树中左分支代表“0”,右分支代表“1” 。
从根结点到每一个叶子结点所经历的路径分支上的“0”或“1”所组成的字符串,为该结点所对应的编码,称之为Huffman编码。
由于每一个字符都是叶子结点,不可能出现在根结点到其它字符结点的路径上,所以1个字符的Huffman编码不多是另外一个字符的Huffman编码的前缀。
若字符集C={a, b, c, d, e, f}所对应的权值集合为W={8, 3, 4, 6, 5, 5},如图6⑵5所示,则字符a,b, c,d, e,f所对应的Huffman编码分别是:10,010,011,00 ,110,111。

Huffman编码算法实现

(1) 数据结构设计
Huffman树中没有度为1的结点,有n个叶子结点的Huffman树共有2n⑴个结点,则可存储在大小为2n⑴的1维数组中。实现编码的结点结构如图6⑵6所示。
缘由:
◆ 求编码需从叶子结点动身走1条从叶子到根的路径;
◆ 译码需从根结点动身走1条到叶子结点的路径。

结点类型定义: #define MAX_NODE 200 /* Max_Node>2n⑴ */ typedef struct { char elem; // 待编码字符 unsigned int Weight ; /* 权值域 */ unsinged int Parent , Lchild , Rchild ; } HTNode, *HuffmanTree ; typedef char **HuffmanCode; typedef struct Node { char elem; unsigned int m_weight; }Node; // 字符及其权值
(2) Huffman树的生成 算法实现 待编码字符的输入: cout<<"输入要编码字符个数:" ; cin>>n; w=(Node *)malloc(n*sizeof(Node)); cout<<"输入字符及其对应的权值:"<<endl; for(i=0;i<n;i++) { cin>>c>>wei; w[i].elem=c; w[i].m_weight=wei; }
从前n个结点中,选取权值比较小的两个:最小的下标为s1,次小的下标s2 void Select(HuffmanTree HT,int n,int &s1,int &s2) { int i; s1=s2=0; for(i=1;i<=n;i++) { if((HT[i].m_weight<HT[s2].m_weight)&&(HT[i].parent==0)&&(s2!=0)) { if(HT[i].m_weight<HT[s1].m_weight) { s2=s1; s1=i; } else s2=i; } if((s1==0||s2==0)&&HT[i].parent==0) { if(s1==0) s1=i; else if(s2==0) { if(HT[i].m_weight<HT[s1].m_weight) { s2=s1; s1=i; } else s2=i; } // end of else if } // end of if } // end of for return; }
新结点的构造 for(i=n+1;i<=m;++i) { Select((*HT),i-1, s1,s2); (*HT)[s1].parent=i; (*HT)[s2].parent=i; (*HT)[i].lchild=s1; (*HT)[i].rchild=s2; (*HT)[i].m_weight=(*HT)[s1].m_weight+(*HT)[s2].m_weight; }

(3) Huffman编码算法
根据出现频度(权值)Weight,对叶子结点的Huffman编码有两种方式:
① 从叶子结点到根逆向处理,求得每一个叶子结点对应字符的Huffman编码。
② 从根结点开始遍历整棵2叉树,求得每一个叶子结点对应字符的Huffman编码。
由Huffman树的生成知,n个叶子结点的树共有2n⑴个结点,叶子结点存储在数组HT中的下标值为1∽n。
① 编码是叶子结点的编码,只需对数组HT[1…n]的n个权值进行编码;
② 每一个字符的编码不同,但编码的最大长度是n。

编码 (*HC)=(HuffmanCode)malloc(n*sizeof(char*)); cd = (char *)malloc(n*sizeof(char)); cd[n-1]=''; for(i=1;i<=n;++i) { start=n⑴; for(c=i,f=(*HT)[i].parent;f!=0;c=f,f=(*HT)[f].parent) { if((*HT)[f].lchild==(unsigned int)c) cd[--start]='0'; else cd[--start]='1'; } (*HC)[i]=(char *)malloc((n-start)*sizeof(char)); strcpy((*HC)[i],&cd[start]); }
生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生