原文地址:http://blog.csdn.net/wangyuling1234567890/article/details/39609863
忽然想起前几天在公司看到一篇关于内存管理的文章,但当时由于别的事情给打断了。今天想起来,就又在网上找了一下,与大家分享一下。
虽然自己现在从事内核模块开发,对内存池和引用计数也有所了解,但由于理解深度及文笔,不能自己娓娓道来,所以就和大家一起来瞻仰一下大师给我们的讲解。
以下内容来自于http://www.ibm.com/developerworks/cn/linux/l-memory/
动态分配的选择、折衷和实现
本文将对 Linux? 程序员可以使用的内存管理技术进行概述,虽然关注的重点是 C 语言,但同样也适用于其他语言。文中将为您提供如何管理内存的细节,然后将进一步展示如何手工管理内存,如何使用引用计数或者内存池来半手工地管理内存,以及如何使用垃圾收集自动管理内。*****************************************************************************************************************************************************************************************************
内存管理是计算机编程最为基本的领域之一。在很多脚本语言中,您不必担心内存是如何管理的,这并不能使得内存管理的重要性有一点点降低。对实际编程来说,理解您的内存管理器的能力与局限性至关重要。在大部分系统语言中,比如 C 和 C++,您必须进行内存管理。本文将介绍手工的、半手工的以及自动的内存管理实践的基本概念。
追溯到在 Apple II 上进行汇编语言编程的时代,那时内存管理还不是个大问题。您实际上在运行整个系统。系统有多少内存,您就有多少内存。您甚至不必费心思去弄明白它有多少内存,因为每一台机器的内存数量都相同。所以,如果内存需要非常固定,那么您只需要选择一个内存范围并使用它即可。
不过,即使是在这样一个简单的计算机中,您也会有问题,尤其是当您不知道程序的每个部分将需要多少内存时。如果您的空间有限,而内存需求是变化的,那么您需要一些方法来满足这些需求:
实现这些需求的程序库称为 分配程序(allocators),因为它们负责分配和回收内存。程序的动态性越强,内存管理就越重要,您的内存分配程序的选择也就更重要。让我们来了解可用于内存管理的不同方法,它们的好处与不足,以及它们最适用的情形。
*****************************************************************************************************************************************************************************************************
C 编程语言提供了两个函数来满足我们的三个需求:
malloc
分配的内存片段的指针,并将其释放,以便以后的程序或操作系统使用(实际上,一些malloc
实现只能将内存归还给程序,而无法将内存归还给操作系统)。要理解内存在程序中是如何分配的,首先需要理解如何将内存从操作系统分配给程序。计算机上的每一个进程都认为自己可以访问所有的物理内存。显然,由于同时在运行多个程序,所以每个进程不可能拥有全部内存。实际上,这些进程使用的是虚拟内存。
只是作为一个例子,让我们假定您的程序正在访问地址为 629 的内存。不过,虚拟内存系统不需要将其存储在位置为 629 的 RAM 中。实际上,它甚至可以不在 RAM 中 ―― 如果物理 RAM 已经满了,它甚至可能已经被转移到硬盘上!由于这类地址不必反映内存所在的物理位置,所以它们被称为虚拟内存。操作系统维持着一个虚拟地址到物理地址的转换的表,以便计算机硬件可以正确地响应地址请求。并且,如果地址在硬盘上而不是在 RAM 中,那么操作系统将暂时停止您的进程,将其他内存转存到硬盘中,从硬盘上加载被请求的内存,然后再重新启动您的进程。这样,每个进程都获得了自己可以使用的地址空间,可以访问比您物理上安装的内存更多的内存。
在 32-位 x86 系统上,每一个进程可以访问 4 GB 内存。现在,大部分人的系统上并没有 4 GB 内存,即使您将 swap 也算上, 每个进程所使用的内存也肯定少于 4 GB。因此,当加载一个进程时,它会得到一个取决于某个称为系统中断点(system break)的特定地址的初始内存分配。该地址之后是未被映射的内存 ―― 用于在 RAM 或者硬盘中没有分配相应物理位置的内存。因此,如果一个进程运行超出了它初始分配的内存,那么它必须请求操作系统“映射进来(map in)”更多的内存。(映射是一个表示一一对应关系的数学术语 ―― 当内存的虚拟地址有一个对应的物理地址来存储内存内容时,该内存将被映射。)
基于 UNIX 的系统有两个可映射到附加内存中的基本系统调用:
brk()
是一个非常简单的系统调用。还记得系统中断点吗?该位置是进程映射的内存边界。brk()
只是简单地将这个位置向前或者向后移动,就可以向进程添加内存或者从进程取走内存。mmap()
,或者说是“内存映像”,类似于 brk()
,但是更为灵活。首先,它可以映射任何位置的内存,而不单单只局限于进程。其次,它不仅可以将虚拟地址映射到物理的 RAM 或者 swap,它还可以将它们映射到文件和文件位置,这样,读写内存将对文件中的数据进行读写。不过,在这里,我们只关心mmap
向进程添加被映射的内存的能力。munmap()
所做的事情与mmap()
相反。如您所见, brk()
或者 mmap()
都可以用来向我们的进程添加额外的虚拟内存。在我们的例子中将使用brk()
,因为它更简单,更通用。
如果您曾经编写过很多 C 程序,那么您可能曾多次使用过 malloc()
和 free()
。不过,您可能没有用一些时间去思考它们在您的操作系统中是如何实现的。本节将向您展示malloc
和free
的一个最简化实现的代码,来帮助说明管理内存时都涉及到了哪些事情。
要试着运行这些示例,需要先 复制本代码清单,并将其粘贴到一个名为 malloc.c 的文件中。接下来,我将一次一个部分地对该清单进行解释。
在大部分操作系统中,内存分配由以下两个简单的函数来处理:
void *malloc(long numbytes)
:该函数负责分配 numbytes
大小的内存,并返回指向第一个字节的指针。void free(void *firstbyte)
:如果给定一个由先前的 malloc
返回的指针,那么该函数会将分配的空间归还给进程的“空闲空间”。malloc_init
将是初始化内存分配程序的函数。它要完成以下三件事:将分配程序标识为已经初始化,找到系统中最后一个有效内存地址,然后建立起指向我们管理的内存的指针。这三个变量都是全局变量:
如前所述,被映射的内存的边界(最后一个有效地址)常被称为系统中断点或者 当前中断点。在很多 UNIX? 系统中,为了指出当前系统中断点,必须使用sbrk(0)
函数。sbrk
根据参数中给出的字节数移动当前系统中断点,然后返回新的系统中断点。使用参数0
只是返回当前中断点。这里是我们的malloc
初始化代码,它将找到当前中断点并初始化我们的变量:
现在,为了完全地管理内存,我们需要能够追踪要分配和回收哪些内存。在对内存块进行了 free
调用之后,我们需要做的是诸如将它们标记为未被使用的等事情,并且,在调用malloc
时,我们要能够定位未被使用的内存块。因此,malloc
返回的每块内存的起始处首先要有这个结构:
现在,您可能会认为当程序调用 malloc
时这会引发问题 ―― 它们如何知道这个结构?答案是它们不必知道;在返回指针之前,我们会将其移动到这个结构之后,把它隐藏起来。这使得返回的指针指向没有用于任何其他用途的内存。那样,从调用程序的角度来看,它们所得到的全部是空闲的、开放的内存。然后,当通过free()
将该指针传递回来时,我们只需要倒退几个内存字节就可以再次找到这个结构。
在讨论分配内存之前,我们将先讨论释放,因为它更简单。为了释放内存,我们必须要做的惟一一件事情就是,获得我们给出的指针,回退 sizeof(struct mem_control_block)
个字节,并将其标记为可用的。这里是对应的代码:
如您所见,在这个分配程序中,内存的释放使用了一个非常简单的机制,在固定时间内完成内存释放。分配内存稍微困难一些。以下是该算法的略述:
我们主要使用连接的指针遍历内存来寻找开放的内存块。这里是代码:
这就是我们的内存管理器。现在,我们只需要构建它,并在程序中使用它即可。
运行下面的命令来构建 malloc
兼容的分配程序(实际上,我们忽略了 realloc()
等一些函数,不过,malloc()
和free()
才是最主要的函数):
该程序将生成一个名为 malloc.so 的文件,它是一个包含有我们的代码的共享库。
在 UNIX 系统中,现在您可以用您的分配程序来取代系统的 malloc()
,做法如下:
LD_PRELOAD
环境变量使动态链接器在加载任何可执行程序之前,先加载给定的共享库的符号。它还为特定库中的符号赋予优先权。因此,从现在起,该会话中的任何应用程序都将使用我们的malloc()
,而不是只有系统的应用程序能够使用。有一些应用程序不使用malloc()
,不过它们是例外。其他使用realloc()
等其他内存管理函数的应用程序,或者错误地假定malloc()
内部行为的那些应用程序,很可能会崩溃。ash
shell 似乎可以使用我们的新malloc()
很好地工作。
如果您想确保 malloc()
正在被使用,那么您应该通过向函数的入口点添加 write()
调用来进行测试。
我们的内存管理器在很多方面都还存在欠缺,但它可以有效地展示内存管理需要做什么事情。它的某些缺点包括:
mmap
一起使用。 malloc
只假定内存分配是成功的)。 realloc()
。 sbrk()
可能会交回比我们请求的更多的内存,所以在堆(heap)的末端会遗漏一些内存。 is_available
标记只包含一位信息,但它要使用完整的 4-字节 的字。 malloc()
的实现有很多,这些实现各有优点与缺点。在设计一个分配程序时,要面临许多需要折衷的选择,其中包括:
每一个实现都有其自身的优缺点集合。在我们的简单的分配程序中,分配非常慢,而回收非常快。另外,由于它在使用虚拟内存系统方面较差,所以它最适于处理大的对象。
还有其他许多分配程序可以使用。其中包括:
ptmalloc
。Doug Lea 的分配程序有着与我们的版本非常类似的基本结构,但是它加入了索引,这使得搜索速度更快,并且可以将多个没有被使用的块组合为一个大的块。它还支持缓存,以便更快地再次使用最近释放的内存。ptmalloc
是 Doug Lea Malloc
的一个扩展版本,支持多线程。在本文后面的
参考资料部分中,有一篇描述 Doug Lea 的 Malloc 实现的文章。 众多可用的分配程序中最有名的就是上述这些分配程序。如果您的程序有特别的分配需求,那么您可能更愿意编写一个定制的能匹配您的程序内存分配方式的分配程序。不过,如果不熟悉分配程序的设计,那么定制分配程序通常会带来比它们解决的问题更多的问题。要获得关于该主题的适当的介绍,请参阅 Donald Knuth 撰写的The Art of Computer Programming Volume 1: Fundamental Algorithms 中的第 2.5 节“Dynamic Storage Allocation”(请参阅参考资料中的链接)。它有点过时,因为它没有考虑虚拟内存环境,不过大部分算法都是基于前面给出的函数。
在 C++ 中,通过重载 operator new()
,您可以以每个类或者每个模板为单位实现自己的分配程序。在 Andrei Alexandrescu 撰写的Modern C++ Design 的第 4 章(“Small Object Allocation”)中,描述了一个小对象分配程序(请参阅参考资料中的链接)。
不只是我们的内存管理器有缺点,基于 malloc()
的内存管理器仍然也有很多缺点,不管您使用的是哪个分配程序。对于那些需要保持长期存储的程序使用malloc()
来管理内存可能会非常令人失望。如果您有大量的不固定的内存引用,经常难以知道它们何时被释放。生存期局限于当前函数的内存非常容易管理,但是对于生存期超出该范围的内存来说,管理内存则困难得多。而且,关于内存管理是由进行调用的程序还是由被调用的函数来负责这一问题,很多 API 都不是很明确。
因为管理内存的问题,很多程序倾向于使用它们自己的内存管理规则。C++ 的异常处理使得这项任务更成问题。有时好像致力于管理内存分配和清理的代码比实际完成计算任务的代码还要多!因此,我们将研究内存管理的其他选择。
*****************************************************************************************************************************************************************************************************
引用计数是一种 半自动(semi-automated)的内存管理技术,这表示它需要一些编程支持,但是它不需要您确切知道某一对象何时不再被使用。引用计数机制为您完成内存管理任务。
在引用计数中,所有共享的数据结构都有一个域来包含当前活动“引用”结构的次数。当向一个程序传递一个指向某个数据结构指针时,该程序会将引用计数增加 1。实质上,您是在告诉数据结构,它正在被存储在多少个位置上。然后,当您的进程完成对它的使用后,该程序就会将引用计数减少 1。结束这个动作之后,它还会检查计数是否已经减到零。如果是,那么它将释放内存。
这样做的好处是,您不必追踪程序中某个给定的数据结构可能会遵循的每一条路径。每次对其局部的引用,都将导致计数的适当增加或减少。这样可以防止在使用数据结构时释放该结构。不过,当您使用某个采用引用计数的数据结构时,您必须记得运行引用计数函数。另外,内置函数和第三方的库不会知道或者可以使用您的引用计数机制。引用计数也难以处理发生循环引用的数据结构。
要实现引用计数,您只需要两个函数 ―― 一个增加引用计数,一个减少引用计数并当计数减少到零时释放内存。
一个示例引用计数函数集可能看起来如下所示:
REF
和 UNREF
可能会更复杂,这取决于您想要做的事情。例如,您可能想要为多线程程序增加锁,那么您可能想扩展refcountedstruct
,使它同样包含一个指向某个在释放内存之前要调用的函数的指针(类似于面向对象语言中的析构函数 ―― 如果您的结构中包含这些指针,那么这是必需的)。
当使用 REF
和 UNREF
时,您需要遵守这些指针的分配规则:
UNREF
分配前左端指针(left-hand-side pointer)指向的值。 REF
分配后左端指针(left-hand-side pointer)指向的值。 在传递使用引用计数的结构的函数中,函数需要遵循以下这些规则:
以下是一个使用引用计数的生动的代码示例:
由于引用计数是如此简单,大部分程序员都自已去实现它,而不是使用库。不过,它们依赖于 malloc
和 free
等低层的分配程序来实际地分配和释放它们的内存。
在 Perl 等高级语言中,进行内存管理时使用引用计数非常广泛。在这些语言中,引用计数由语言自动地处理,所以您根本不必担心它,除非要编写扩展模块。由于所有内容都必须进行引用计数,所以这会对速度产生一些影响,但它极大地提高了编程的安全性和方便性。以下是引用计数的益处:
不过,它也有其不足之处:
try
或 setjmp()
/
longjmp()
)时,您必须采取其他方法。 C++ 可以通过使用 智能指针(smart pointers)来容忍程序员所犯的一些错误,智能指针可以为您处理引用计数等指针处理细节。不过,如果不得不使用任何先前的不能处理智能指针的代码(比如对 C 库的联接),实际上,使用它们的后果通实比不使用它们更为困难和复杂。因此,它通常只是有益于纯 C++ 项目。如果您想使用智能指针,那么您实在应该去阅读 Alexandrescu 撰写的Modern C++ Design 一书中的“Smart Pointers”那一章。
内存池是另一种半自动内存管理方法。内存池帮助某些程序进行自动内存管理,这些程序会经历一些特定的阶段,而且每个阶段中都有分配给进程的特定阶段的内存。例如,很多网络服务器进程都会分配很多针对每个连接的内存 ―― 内存的最大生存期限为当前连接的存在期。Apache 使用了池式内存(pooled memory),将其连接拆分为各个阶段,每个阶段都有自己的内存池。在结束每个阶段时,会一次释放所有内存。
在池式内存管理中,每次内存分配都会指定内存池,从中分配内存。每个内存池都有不同的生存期限。在 Apache 中,有一个持续时间为服务器存在期的内存池,还有一个持续时间为连接的存在期的内存池,以及一个持续时间为请求的存在期的池,另外还有其他一些内存池。因此,如果我的一系列函数不会生成比连接持续时间更长的数据,那么我就可以完全从连接池中分配内存,并知道在连接结束时,这些内存会被自动释放。另外,有一些实现允许注册清除函数(cleanup functions),在清除内存池之前,恰好可以调用它,来完成在内存被清理前需要完成的其他所有任务(类似于面向对象中的析构函数)。
要在自己的程序中使用池,您既可以使用 GNU libc 的 obstack 实现,也可以使用 Apache 的 Apache Portable Runtime。GNU obstack 的好处在于,基于 GNU 的 Linux 发行版本中默认会包括它们。Apache Portable Runtime 的好处在于它有很多其他工具,可以处理编写多平台服务器软件所有方面的事情。要深入了解 GNU obstack 和 Apache 的池式内存实现,请参阅参考资料部分中指向这些实现的文档的链接。
下面的假想代码列表展示了如何使用 obstack:
基本上,在操作的每一个主要阶段结束之后,这个阶段的 obstack 会被释放。不过,要注意的是,如果一个过程需要分配持续时间比当前阶段更长的内存,那么它也可以使用更长期限的 obstack,比如连接或者全局内存。传递给obstack_free()
的NULL
指出它应该释放 obstack 的全部内容。可以用其他的值,但是它们通常不怎么实用。
使用池式内存分配的益处如下所示:
池式内存的缺点是:
*****************************************************************************************************************************************************************************************************
垃圾收集(Garbage collection)是全自动地检测并移除不再使用的数据对象。垃圾收集器通常会在当可用内存减少到少于一个具体的阈值时运行。通常,它们以程序所知的可用的一组“基本”数据 ―― 栈数据、全局变量、寄存器 ―― 作为出发点。然后它们尝试去追踪通过这些数据连接到每一块数据。收集器找到的都是有用的数据;它没有找到的就是垃圾,可以被销毁并重新使用这些无用的数据。为了有效地管理内存,很多类型的垃圾收集器都需要知道数据结构内部指针的规划,所以,为了正确运行垃圾收集器,它们必须是语言本身的一部分。
Hans Boehm 的保守垃圾收集器是可用的最流行的垃圾收集器之一,因为它是免费的,而且既是保守的又是增量的,可以使用 --enable-redirect-malloc
选项来构建它,并且可以将它用作系统分配程序的简易替代者(drop-in replacement)(用malloc
/free
代替它自己的 API)。实际上,如果这样做,您就可以使用与我们在示例分配程序中所使用的相同的LD_PRELOAD
技巧,在系统上的几乎任何程序中启用垃圾收集。如果您怀疑某个程序正在泄漏内存,那么您可以使用这个垃圾收集器来控制进程。在早期,当 Mozilla 严重地泄漏内存时,很多人在其中使用了这项技术。这种垃圾收集器既可以在 Windows? 下运行,也可以在 UNIX 下运行。
垃圾收集的一些优点:
其缺点包括:
*****************************************************************************************************************************************************************************************************
一切都需要折衷:性能、易用、易于实现、支持线程的能力等,这里只列出了其中的一些。为了满足项目的要求,有很多内存管理模式可以供您使用。每种模式都有大量的实现,各有其优缺点。对很多项目来说,使用编程环境默认的技术就足够了,不过,当您的项目有特殊的需要时,了解可用的选择将会有帮助。下表对比了本文中涉及的内存管理策略。
策略 | 分配速度 | 回收速度 | 局部缓存 | 易用性 | 通用性 | 实时可用 | SMP 线程友好 |
---|---|---|---|---|---|---|---|
定制分配程序 | 取决于实现 | 取决于实现 | 取决于实现 | 很难 | 无 | 取决于实现 | 取决于实现 |
简单分配程序 | 内存使用少时较快 | 很快 | 差 | 容易 | 高 | 否 | 否 |
GNU malloc |
中 | 快 | 中 | 容易 | 高 | 否 | 中 |
Hoard | 中 | 中 | 中 | 容易 | 高 | 否 | 是 |
引用计数 | N/A | N/A | 非常好 | 中 | 中 | 是(取决于 malloc 实现) |
取决于实现 |
池 | 中 | 非常快 | 极好 | 中 | 中 | 是(取决于 malloc 实现) |
取决于实现 |
垃圾收集 | 中(进行收集时慢) | 中 | 差 | 中 | 中 | 否 | 几乎不 |
增量垃圾收集 | 中 | 中 | 中 | 中 | 中 | 否 | 几乎不 |
增量保守垃圾收集 | 中 | 中 | 中 | 容易 | 高 | 否 | 几乎不 |
―――――――― 更多内容,请查看原文:http://www.ibm.com/developerworks/cn/linux/l-memory/