国内最全IT社区平台 联系我们 | 收藏本站
华晨云阿里云优惠2
您当前位置:首页 > 互联网 > 继Cloudera之后,MapR宣布对Spark的完全支持

继Cloudera之后,MapR宣布对Spark的完全支持

来源:程序员人生   发布时间:2014-09-18 17:13:28 阅读次数:1894次

【编者按】Spark,发源于美国加州大学伯克利分校AMPLab的集群计算平台,当下已成为Apache基金会的顶级项目。而在不久前,知名Hadoop解决方案供应商Cloudera已宣布了其发行版对Spark的支持。毫无疑问,Spark已成为流行的大数据计算框架之一,而据Gigaom Derrick Harris的一则消息,MapR近日也宣布了对Spark的支持,同时这个Hadoop先锋的支持将更加彻底。


2014年4月19日“ 中国Spark技术峰会”(Spark Summit China 2014)将在北京召开,国内外Apache Spark社区成员和企业用户将首次齐聚北京。AMPLab、Databricks、Intel、淘宝、网易等公司的Spark贡献者及一线开发者将分享 他们在生产环境中的Spark项目经验和最佳实践方案。 


下为译文:

MapR是知名的Hadoop供应商,最近该公司为其Hadoop发行版中添加了完整的Spark堆栈。这是一项明智之举,更说明Spark很可能成为未来的数据处理框架。

MapR也是应用Apache Spark的先驱者,周二,MapR宣布将整合Spark栈至其Hadoop版本,并将此作为与Spark初创公司Databricks(Opm Stoica,创始人及CEO,见上图)合作的一部分。Spark使处理大数据工作负载变得更为便捷,也使得大数据工作负载编程变得更容易。

Spark最初是加州伯克利大学开发的一款内存处理框架,随后它逐渐流行起来,但它真正的崛起还是在2013年9月――被Databricks正式推出。随后,Cloudera将Spark整合到其Hadoop发行版(作为与Databricks合作的一部分)。同时,许多按Hadoop设计的项目和公司都计划将支持Spark或直接转向Spark。

这其中包括Cloudera的Oryx项目,分析初创公司Platfora,甚至包括Apache Mahout项目;也包括参与Databricks认证程序的公司们。

Spark现在如此盛行,这是因为它既做到了MapReduce可以做到的,还做到了MapReduce没能做到的。MapReduce是传统的Hadoop数据处理框架,它速度慢(它采用的是批处理),编程繁琐。Spark快捷、灵活――这使得Spark可以更好的处理诸如机器学习、图形处理和、交互式查询类的任务――而且易于编程。Spark是用Scala写的,不过它也支持Java,Python与R语言。


YARN是资源管理系统,也是Hadoop 2.0的一部分,YARN允许多处理框架同时运行于同一集群,这些框架都有访问Hadoop分布式文件系统进行存储的权限。这使得Hadoop对Spark的支持成为可能。

MapR的这条新闻最有趣的地方是,MapR提供了对Spark栈的全部支持――这包括Shark SQL查询引擎(它本质上说一个更快Apache Hive)和MLLib机器学习库――然而Cloudera却不支持Shark。这大概是因为Cloudera还在力推它的Impala SQL查询引擎,而MapReduce也没有包括这个引擎。MapR一直引领交互SQL查询项目Apache Drill的发展;此外随着Drill的到来,MapR也添加了对HP Vertica的本地支持。

从MapR的角度,通过整合Spark这一用户需求的功能提高了其在业界的地位(先前MapR受到的关注度是远少于竞争对手Cloudera和Hortonworks的)。例如,MapR现在开发了自己的HBase NoSQL数据存储,相较于其他Hadoop发行版包含的开源版本,这个数据存储功能更齐全。

正是诸如Spark类的技术――以及任何可以运行在YARN上的技术――使得Hadoop成为有潜力颠覆现有数据行业供应商的新生力量。Apache Hadoop一直提供廉价、开源的存储,不过现在生态系统已经将Hadoop变为一个可以在数据之上做很多事情的平台。在未来的几年,我们将看到更多的分析应用、甚至是数据库采用Spark或类似的技术作为引擎。

原文链接: Spark is now part of MapR’s Hadoop distro, too(翻译/蔡仁君 责编/仲浩)


以“  云计算大数据 推动智慧中国 ”为主题的  第六届中国云计算大会 将于5月20-23日在北京国家会议中心隆重举办。产业观察、技术培训、主题论坛、行业研讨,内容丰富,干货十足。票价优惠,马上  报名 ! 

生活不易,码农辛苦
如果您觉得本网站对您的学习有所帮助,可以手机扫描二维码进行捐赠
程序员人生
------分隔线----------------------------
分享到:
------分隔线----------------------------
关闭
程序员人生